阅读更多
自从MongoDB被越来越多的大型关键项目采用后,数据分析也成为了越来越重要的话题。人们似乎已经厌倦了使用不同的软件来进行分析(这都利用到了Hadoop),因为这些方法往往需要大规模的数据传输,而这些成本相当昂贵。

MongoDB提供了2种方式来对数据进行分析:Map Reduce(以下简称MR)和聚合框架(Aggregation Framework)。MR非常灵活且易于使用,它可以很好地与分片(sharding)结合使用,并允许大规模输出。尽管在MongoDB v2.4版本中,由于JavaScript引擎从Spider切换到了V8,使得MR的性能有了大幅改进,但是与Agg Framework(使用C++)相比,MR的速度还是显得比较慢。本文就来看看,有哪些方法可以让MR的速度有所提升。

测试

首先我们来做个测试,插入1000万文档,这些文档中包含了介于0和100万之间的单一整数值,这意味着,平均每10个文档具有相同的值。

> for (var i = 0; i < 10000000; ++i){ db.uniques.insert({ dim0: Math.floor(Math.random()*1000000) });}
> db.uniques.findOne()
{ "_id" : ObjectId("51d3c386acd412e22c188dec"), "dim0" : 570859 }
> db.uniques.ensureIndex({dim0: 1})
> db.uniques.stats()
{
        "ns" : "test.uniques",
        "count" : 10000000,
        "size" : 360000052,
        "avgObjSize" : 36.0000052,
        "storageSize" : 582864896,
        "numExtents" : 18,
        "nindexes" : 2,
        "lastExtentSize" : 153874432,
        "paddingFactor" : 1,
        "systemFlags" : 1,
        "userFlags" : 0,
        "totalIndexSize" : 576040080,
        "indexSizes" : {
                "_id_" : 324456384,
                "dim0_1" : 251583696
        },
        "ok" : 1
}


这里我们想要得到文档中唯一值的计数,可以通过下面的MR任务来轻松完成:

> db.runCommand(
{ mapreduce: "uniques",
map: function () { emit(this.dim0, 1); },
reduce: function (key, values) { return Array.sum(values); },
out: "mrout" })
{
        "result" : "mrout",
        "timeMillis" : 1161960,
        "counts" : {
                "input" : 10000000,
                "emit" : 10000000,
                "reduce" : 1059138,
                "output" : 999961
        },
        "ok" : 1
}


正如你看到的,输出结果大约需要1200秒(在EC2 M3实例上测试),共输出了1千万maps、100万reduces、999961个文档。结果类似于:

> db.mrout.find()
{ "_id" : 1, "value" : 10 }
{ "_id" : 2, "value" : 5 }
{ "_id" : 3, "value" : 6 }
{ "_id" : 4, "value" : 10 }
{ "_id" : 5, "value" : 9 }
{ "_id" : 6, "value" : 12 }
{ "_id" : 7, "value" : 5 }
{ "_id" : 8, "value" : 16 }
{ "_id" : 9, "value" : 10 }
{ "_id" : 10, "value" : 13 }
...


下面就来看看如何进行优化。

使用排序

我在之前的这篇文章中简要说明了使用排序对于MR的好处,这是一个鲜为人知的特性。在这种情况下,如果处理未排序的输入,意味着MR引擎将得到随机排序的值,基本上没有机会在RAM中进行reduce,相反,它将不得不通过一个临时collection来将数据写回磁盘,然后按顺序读取并进行reduce。

下面来看看如果使用排序,会有什么帮助:

> db.runCommand(
{ mapreduce: "uniques",
map: function () { emit(this.dim0, 1); },
reduce: function (key, values) { return Array.sum(values); },
out: "mrout",
sort: {dim0: 1} })
{
        "result" : "mrout",
        "timeMillis" : 192589,
        "counts" : {
                "input" : 10000000,
                "emit" : 10000000,
                "reduce" : 1000372,
                "output" : 999961
        },
        "ok" : 1
}


现在时间降到了192秒,速度提升了6倍。其实reduces的数量是差不多的,但是它们在被写入磁盘之前已经在RAM中完成了。

使用多线程

在MongoDB中,一个单一的MR任务并不能使用多线程——只有在多个任务中才能使用多线程。但是目前的多核CPU非常有利于在单一服务器上进行并行化工作,就像Hadoop。我们需要做的是,将输入数据分割成若干块,并为每个块分配一个MR任务。splitVector命令可以帮助你非常迅速地找到分割点,如果你有更简单的分割方法更好。

> db.runCommand({splitVector: "test.uniques", keyPattern: {dim0: 1}, maxChunkSizeBytes: 32000000})
{
    "timeMillis" : 6006,
    "splitKeys" : [
        {
            "dim0" : 18171
        },
        {
            "dim0" : 36378
        },
        {
            "dim0" : 54528
        },
        {
            "dim0" : 72717
        },
…
        {
            "dim0" : 963598
        },
        {
            "dim0" : 981805
        }
    ],
    "ok" : 1
}


从1千万文档中找出分割点,使用splitVector命令只需要大约5秒,这已经相当快了。所以,下面我们需要做的是找到一种方式来创建多个MR任务。从应用服务器方面来说,使用多线程和$gt / $lt查询命令会非常方便。从shell方面来说,可以使用ScopedThread对象,它的工作原理如下:

> var t = new ScopedThread(mapred, 963598, 981805)
> t.start()
> t.join()


现在我们可以放入一些JS代码,这些代码可以产生4个线程,下面来等待结果显示:

> var res = db.runCommand({splitVector: "test.uniques", keyPattern: {dim0: 1}, maxChunkSizeBytes: 32 *1024 * 1024 })
> var keys = res.splitKeys
> keys.length
39
> var mapred = function(min, max) {
return db.runCommand({ mapreduce: "uniques",
map: function () { emit(this.dim0, 1); },
reduce: function (key, values) { return Array.sum(values); },
out: "mrout" + min,
sort: {dim0: 1},
query: { dim0: { $gte: min, $lt: max } } }) }
> var numThreads = 4
> var inc = Math.floor(keys.length / numThreads) + 1
> threads = []; for (var i = 0; i < numThreads; ++i) { var min = (i == 0) ? 0 : keys[i * inc].dim0; var max = (i * inc + inc >= keys.length) ? MaxKey : keys[i * inc + inc].dim0 ; print("min:" + min + " max:" + max); var t = new ScopedThread(mapred, min, max); threads.push(t); t.start() }
min:0 max:274736
min:274736 max:524997
min:524997 max:775025
min:775025 max:{ "$maxKey" : 1 }
connecting to: test
connecting to: test
connecting to: test
connecting to: test
> for (var i in threads) { var t = threads[i]; t.join(); printjson(t.returnData()); }
{
        "result" : "mrout0",
        "timeMillis" : 205790,
        "counts" : {
                "input" : 2750002,
                "emit" : 2750002,
                "reduce" : 274828,
                "output" : 274723
        },
        "ok" : 1
}
{
        "result" : "mrout274736",
        "timeMillis" : 189868,
        "counts" : {
                "input" : 2500013,
                "emit" : 2500013,
                "reduce" : 250364,
                "output" : 250255
        },
        "ok" : 1
}
{
        "result" : "mrout524997",
        "timeMillis" : 191449,
        "counts" : {
                "input" : 2500014,
                "emit" : 2500014,
                "reduce" : 250120,
                "output" : 250019
        },
        "ok" : 1
}
{
        "result" : "mrout775025",
        "timeMillis" : 184945,
        "counts" : {
                "input" : 2249971,
                "emit" : 2249971,
                "reduce" : 225057,
                "output" : 224964
        },
        "ok" : 1
}


第1个线程所做的工作比其他的要多一点,但时间仍达到了190秒,这意味着多线程并没有比单线程快!

使用多个数据库

这里的问题是,线程之间存在太多锁争用。当锁时,MR不是非常无私(每1000次读取会进行yield)。由于MR任务做了大量写操作,线程之间结束时会等待彼此。由于MongoDB的每个数据库都有独立的锁,那么让我们来尝试为每个线程使用不同的输出数据库:

> var mapred = function(min, max) {
return db.runCommand({ mapreduce: "uniques",
map: function () { emit(this.dim0, 1); },
reduce: function (key, values) { return Array.sum(values); },
out: { replace: "mrout" + min, db: "mrdb" + min },
sort: {dim0: 1},
query: { dim0: { $gte: min, $lt: max } } }) }
> threads = []; for (var i = 0; i < numThreads; ++i) { var min = (i == 0) ? 0 : keys[i * inc].dim0; var max = (i * inc + inc >= keys.length) ? MaxKey : keys[i * inc + inc].dim0 ; print("min:" + min + " max:" + max); var t = new ScopedThread(mapred, min, max); threads.push(t); t.start() }
min:0 max:274736
min:274736 max:524997
min:524997 max:775025
min:775025 max:{ "$maxKey" : 1 }
connecting to: test
connecting to: test
connecting to: test
connecting to: test
> for (var i in threads) { var t = threads[i]; t.join(); printjson(t.returnData()); }
...
{
        "result" : {
                "db" : "mrdb274736",
                "collection" : "mrout274736"
        },
        "timeMillis" : 105821,
        "counts" : {
                "input" : 2500013,
                "emit" : 2500013,
                "reduce" : 250364,
                "output" : 250255
        },
        "ok" : 1
}
...


所需时间减少到了100秒,这意味着与一个单独的线程相比,速度约提高2倍。尽管不如预期,但已经很不错了。在这里,我使用了4个核心,只提升了2倍,如果使用8核CPU,大约会提升4倍。

使用纯JavaScript模式

在线程之间分割输入数据时,有一些非常有趣的东西:每个线程只拥有约25万主键来输出,而不是100万。这意味着我们可以使用“纯JS模式”——通过jsMode:true来启用。开启后,MongoDB不会在JS和BSON之间反复转换,相反,它会从内部的一个50万主键的JS字典来reduces所有对象。下面来看看该操作是否对速度提升有帮助。

> var mapred = function(min, max) {
return db.runCommand({ mapreduce: "uniques",
map: function () { emit(this.dim0, 1); },
reduce: function (key, values) { return Array.sum(values); },
out: { replace: "mrout" + min, db: "mrdb" + min },
sort: {dim0: 1},
query: { dim0: { $gte: min, $lt: max } },
jsMode: true }) }
> threads = []; for (var i = 0; i < numThreads; ++i) { var min = (i == 0) ? 0 : keys[i * inc].dim0; var max = (i * inc + inc >= keys.length) ? MaxKey : keys[i * inc + inc].dim0 ; print("min:" + min + " max:" + max); var t = new ScopedThread(mapred, min, max); threads.push(t); t.start() }
min:0 max:274736
min:274736 max:524997
min:524997 max:775025
min:775025 max:{ "$maxKey" : 1 }
connecting to: test
connecting to: test
connecting to: test
connecting to: test
> for (var i in threads) { var t = threads[i]; t.join(); printjson(t.returnData()); }
...
{
        "result" : {
                "db" : "mrdb274736",
                "collection" : "mrout274736"
        },
        "timeMillis" : 70507,
        "counts" : {
                "input" : 2500013,
                "emit" : 2500013,
                "reduce" : 250156,
                "output" : 250255
        },
        "ok" : 1
}
...


现在时间降低到70秒。看来jsMode确实有帮助,尤其是当对象有很多字段时。该示例中是一个单一的数字字段,不过仍然提升了30%。

MongoDB v2.6版本中的改进

在MongoDB v2.6版本的开发中,移除了一段关于在JS函数调用时的一个可选“args”参数的代码。该参数是不标准的,也不建议使用,它由于历史原因遗留了下来(见SERVER-4654)。让我们从Git库中pull最新的MongoDB并编译,然后再次运行测试用例:

...
{
        "result" : {
                "db" : "mrdb274736",
                "collection" : "mrout274736"
        },
        "timeMillis" : 62785,
        "counts" : {
                "input" : 2500013,
                "emit" : 2500013,
                "reduce" : 250156,
                "output" : 250255
        },
        "ok" : 1
}
...


从结果来看,时间降低到了60秒,速度大约提升了10-15%。同时,这种更改也改善了JS引擎的整体堆消耗量。

结论

回头来看,对于同样的MR任务,与最开始时的1200秒相比,速度已经提升了20倍。这种优化应该适用于大多数情况,即使一些技巧效果不那么理想(比如使用多个输出dbs /集合)。但是这些技巧可以帮助人们来提升MR任务的速度,未来这些特性也许会更加易用——比如,这个ticket 将会使splitVector命令更加可用,这个ticket将会改进同一数据库中的多个MR任务。

英文原文:How to speed up MongoDB Map Reduce by 20x
13
8
评论 共 3 条 请登录后发表评论
3 楼 lord_is_layuping 2013-08-14 14:25
收藏      
2 楼 kenshinyelin 2013-07-09 16:33
果断收藏   
1 楼 youjianbo_han_87 2013-07-09 13:16
牛叉。   

发表评论

您还没有登录,请您登录后再发表评论

相关推荐

  • MongoDB MapReduce速度提升20倍的优化宝典

    自从MongoDB被越来越多的大型关键项目采用后,数据分析也成为了越来越重要的话题。人们似乎已经厌倦了使用不同的软件来进行分析(这都利用到了Hadoop),因为这些方法往往需要大规模的数据传输,而这些成本相当昂贵...

  • MongoDB Map Reduce速度提升20倍的优化宝典

    自从MongoDB被越来越多的大型关键项目采用后,数据分析也成为了越来越重要的话题。人们似乎已经厌倦了使用不同的软件来进行分析(这都利用到了Hadoop),因为这些方法往往需要大规模的数据传输,而这些成本相当昂贵...

  • 面试宝典之MongoDB

    什么是MongoDB MongoDB是一款由C++编写的跨平台、面向文档的非关系型数据库。是非关系型数据库当中功能最丰富、最向关系型数据库的产品。他支持的数据结构非常松散,是类似JSON的BSON格式,可以存储比较复杂的的...

  • PHP 十年程序员 面试宝典

    Nginx 是一个开源的” 高性能代理服务器 (可以处理数千个并发且迅速响应)”,采用异步非阻塞的事件驱动模型实现了高可用(高性能、低消耗、可靠稳定)。常用于 Web 服务器、负载均衡、反向代理以及静态资源缓存等。...

  • MongoDB管理与开发精要

    MongoDB管理与开发精要 ... 最初,本书的部分初稿在几大IT技术社区“疯传”,被社区网友视为学习MongoDB的“宝典”。由于受到社区网友的热捧,在初稿的基础上,作者对本书内容进行了系统化的补充,使原...

  • 2021数学建模美赛C题代码.zip

    最全的数学建模美赛C题和代码、大量刷题题库、逻辑清晰易于学习

  • 这是一个保存Springboot+MyBaits项目的仓库.zip

    springboot框架 一、Spring Boot基础应用 Spring Boot特征 概念: 约定优于配置,简单来说就是你所期待的配置与约定的配置一致,那么就可以不做任何配置,约定不符合期待时才需要对约定进行替换配置。 特征: 1. SpringBoot Starter:他将常用的依赖分组进行了整合,将其合并到一个依赖中,这样就可以一次性添加到项目的Maven或Gradle构建中。 2,使编码变得简单,SpringBoot采用 JavaConfig的方式对Spring进行配置,并且提供了大量的注解,极大的提高了工作效率,比如@Configuration和@bean注解结合,基于@Configuration完成类扫描,基于@bean注解把返回值注入IOC容器。 3.自动配置:SpringBoot的自动配置特性利用了Spring对条件化配置的支持,合理地推测应用所需的bean并自动化配置他们。 4.使部署变得简单,SpringBoot内置了三种Servlet容器,Tomcat,Jetty,undertow.我们只需要一个Java的运行环境就可以跑SpringBoot的项目了

  • 课设&大作业-毕业设计精品课程网站,采用的技术是 SSM 框架和 Shiro.zip

    【资源说明】【毕业设计】 1、该资源内项目代码都是经过测试运行成功,功能正常的情况下才上传的,请放心下载使用。 2、适用人群:主要针对计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、数学、电子信息等)的同学或企业员工下载使用,具有较高的学习借鉴价值。 3、不仅适合小白学习实战练习,也可作为大作业、课程设计、毕设项目、初期项目立项演示等,欢迎下载,互相学习,共同进步!

  • c#做的综合上位机,服务于freescale智能车&amp;电子设计.zip

    c#做的综合上位机,服务于freescale智能车&amp;电子设计.zip

  • tensorflow-gpu-2.7.2-cp39-cp39-manylinux2010-x86-64.whl

    bert

  • Python使用 LSTM循环神经网络预测风力发电厂中风机产生的功率项目源码+数据集.zip

    详情请查看资源内容中使用说明;详情请查看资源内容中使用说明;详情请查看资源内容中使用说明;详情请查看资源内容中使用说明;详情请查看资源内容中使用说明;详情请查看资源内容中使用说明;详情请查看资源内容中使用说明;详情请查看资源内容中使用说明;详情请查看资源内容中使用说明;详情请查看资源内容中使用说明;详情请查看资源内容中使用说明;详情请查看资源内容中使用说明;详情请查看资源内容中使用说明;详情请查看资源内容中使用说明;详情请查看资源内容中使用说明;详情请查看资源内容中使用说明;详情请查看资源内容中使用说明;详情请查看资源内容中使用说明;详情请查看资源内容中使用说明;详情请查看资源内容中使用说明;详情请查看资源内容中使用说明;详情请查看资源内容中使用说明;详情请查看资源内容中使用说明;详情请查看资源内容中使用说明;详情请查看资源内容中使用说明;详情请查看资源内容中使用说明;

  • Java本科毕业设计NBA球员数据管理系统源码.zip

    高分设计源码,详情请查看资源内容中使用说明 高分设计源码,详情请查看资源内容中使用说明高分设计源码,详情请查看资源内容中使用说明高分设计源码,详情请查看资源内容中使用说明高分设计源码,详情请查看资源内容中使用说明高分设计源码,详情请查看资源内容中使用说明高分设计源码,详情请查看资源内容中使用说明高分设计源码,详情请查看资源内容中使用说明高分设计源码,详情请查看资源内容中使用说明高分设计源码,详情请查看资源内容中使用说明高分设计源码,详情请查看资源内容中使用说明高分设计源码,详情请查看资源内容中使用说明高分设计源码,详情请查看资源内容中使用说明高分设计源码,详情请查看资源内容中使用说明高分设计源码,详情请查看资源内容中使用说明高分设计源码,详情请查看资源内容中使用说明高分设计源码,详情请查看资源内容中使用说明高分设计源码,详情请查看资源内容中使用说明高分设计源码,详情请查看资源内容中使用说明高分设计源码,详情请查看资源内容中使用说明高分设计源码,详情请查看资源内容中使用说明高分设计源码,详情请查看资源内容中使用说明

  • 基于机器学习的内核恶意代码检测研究

    一篇基于机器学习的内核恶意代码检测研究,传统的恶意代码检测分析已经无法满足现状了,本文指出了其不足,并使用机器学习算法模型进行训练测试,通过一些特征检测达到了很高的准确率

  • yue-library是一个基于SpringBoot封装的增强库,提供丰富的Java工具类库.zip

    springboot框架 一、Spring Boot基础应用 Spring Boot特征 概念: 约定优于配置,简单来说就是你所期待的配置与约定的配置一致,那么就可以不做任何配置,约定不符合期待时才需要对约定进行替换配置。 特征: 1. SpringBoot Starter:他将常用的依赖分组进行了整合,将其合并到一个依赖中,这样就可以一次性添加到项目的Maven或Gradle构建中。 2,使编码变得简单,SpringBoot采用 JavaConfig的方式对Spring进行配置,并且提供了大量的注解,极大的提高了工作效率,比如@Configuration和@bean注解结合,基于@Configuration完成类扫描,基于@bean注解把返回值注入IOC容器。 3.自动配置:SpringBoot的自动配置特性利用了Spring对条件化配置的支持,合理地推测应用所需的bean并自动化配置他们。 4.使部署变得简单,SpringBoot内置了三种Servlet容器,Tomcat,Jetty,undertow.我们只需要一个Java的运行环境就可以跑SpringBoot的项目了

  • node-v8.16.2.tar.xz

    Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。

  • 微信小程序 仿百度小说小程序 看小说小程序 实现源码

    微信小程序 仿百度小说小程序 看小说小程序 实现源码 微信小程序是一种不需要下载安装即可使用的应用,它实现了应用“触手可及”的梦想,用户扫一扫或搜一下即可打开应用。对于开发者而言,小程序开发门槛相对较低,难度不及APP开发,能够满足简单的基础应用,适合生活服务类线下商铺以及非刚需低频应用的转换。 下面是一个仿百度小说小程序的简单介绍,用于说明其功能和特点: --- **微信小程序:仿百度小说阅读器** 在这个快节奏的时代,人们越来越倾向于利用碎片化时间来阅读。微信小程序提供了一个便捷的平台,使得用户可以在微信内部直接阅读小说,无需切换应用,极大地提升了阅读体验。本小程序仿照百度小说的界面和功能设计,为用户提供了一个简洁、直观的阅读环境。 主要功能包括: 1. **海量书库**:集成了数千本流行小说资源,涵盖玄幻、都市、言情、历史等多个分类。 2. **智能搜索**:用户可以通过书名或作者进行快速搜索,轻松找到想要阅读的小说。 3. **阅读设置**:提供字体大小、背景颜色、夜间模式等个性化设置,适应不同用户的阅读习惯。 4. **书签功能**:用户可以标记重要章节,方便下次

  • 基于spring-boot dubbox搭建的java分布式系统的前端管理.zip

    springboot框架 一、Spring Boot基础应用 Spring Boot特征 概念: 约定优于配置,简单来说就是你所期待的配置与约定的配置一致,那么就可以不做任何配置,约定不符合期待时才需要对约定进行替换配置。 特征: 1. SpringBoot Starter:他将常用的依赖分组进行了整合,将其合并到一个依赖中,这样就可以一次性添加到项目的Maven或Gradle构建中。 2,使编码变得简单,SpringBoot采用 JavaConfig的方式对Spring进行配置,并且提供了大量的注解,极大的提高了工作效率,比如@Configuration和@bean注解结合,基于@Configuration完成类扫描,基于@bean注解把返回值注入IOC容器。 3.自动配置:SpringBoot的自动配置特性利用了Spring对条件化配置的支持,合理地推测应用所需的bean并自动化配置他们。 4.使部署变得简单,SpringBoot内置了三种Servlet容器,Tomcat,Jetty,undertow.我们只需要一个Java的运行环境就可以跑SpringBoot的项目了

  • Android毕业论文开发记单词app源码.zip

    高分设计源码,详情请查看资源内容中使用说明 高分设计源码,详情请查看资源内容中使用说明高分设计源码,详情请查看资源内容中使用说明高分设计源码,详情请查看资源内容中使用说明高分设计源码,详情请查看资源内容中使用说明高分设计源码,详情请查看资源内容中使用说明高分设计源码,详情请查看资源内容中使用说明高分设计源码,详情请查看资源内容中使用说明高分设计源码,详情请查看资源内容中使用说明高分设计源码,详情请查看资源内容中使用说明高分设计源码,详情请查看资源内容中使用说明高分设计源码,详情请查看资源内容中使用说明高分设计源码,详情请查看资源内容中使用说明高分设计源码,详情请查看资源内容中使用说明高分设计源码,详情请查看资源内容中使用说明高分设计源码,详情请查看资源内容中使用说明高分设计源码,详情请查看资源内容中使用说明高分设计源码,详情请查看资源内容中使用说明高分设计源码,详情请查看资源内容中使用说明高分设计源码,详情请查看资源内容中使用说明高分设计源码,详情请查看资源内容中使用说明高分设计源码,详情请查看资源内容中使用说明

Global site tag (gtag.js) - Google Analytics