`
cpf1985
  • 浏览: 76848 次
  • 性别: Icon_minigender_1
  • 来自: 北京
社区版块
存档分类
最新评论
阅读更多
海量数据1.0
1. 给定a、b两个文件,各存放50亿个url,每个url各占64字节,内存限制是4G,让你找出a、b文件共同的url?

方案1:可以估计每个文件安的大小为50G×64=320G,远远大于内存限制的4G。所以不可能将其完全加载到内存中处理。考虑采取分而治之的方 法。

s 遍历文件a,对每个url求取clip_image002,然后根据所取得的值将 url分别存储到1000个小文件(记为clip_image004)中。这样每个小文件的大约 为300M。

s 遍历文件b,采取和a相同的方式将url分别存储到1000各小文件(记为clip_image006)。这样处理后,所有可能相 同的url都在对应的小文件(clip_image008)中,不对应的小文件不可 能有相同的url。然后我们只要求出1000对小文件中相同的url即可。

s 求每对小文件中相同的url时,可以把其中一个小文件的url存储到hash_set中。然后遍历另一个小文件的每个url,看其是否在刚才构建的 hash_set中,如果是,那么就是共同的url,存到文件里面就可以了。

方案2:如果允许有一定的错误率,可以使用Bloom filter,4G内存大概可以表示340亿bit。将其中一个文件中的url使用Bloom filter映射为这340亿bit,然后挨个读取另外一个文件的url,检查是否与Bloom filter,如果是,那么该url应该是共同的url(注意会有一定的错误率)。

2. 有10个文件,每个文件1G,每个文件的每一行存放的都是用户的query,每个文件的query都可能重复。要求你按照query的频度排序。

方案1:

s 顺序读取10个文件,按照hash(query)%10的结果将query写入到另外10个文件(记为clip_image010)中。这样新生成的文件每个 的大小大约也1G(假设hash函数是随机的)。

s 找一台内存在2G左右的机器,依次对clip_image010[1]用hash_map(query, query_count)来统计每个query出现的次数。利用快速/堆/归并排序按照出现次数进行排序。将排序好的query和对应的 query_cout输出到文件中。这样得到了10个排好序的文件(记为clip_image012)。

s 对clip_image012[1]这10个文件进行归并 排序(内排序与外排序相结合)。

方案2:

一般query的总量是有限的,只是重复的次数比较多而已,可能对于所有的query,一次性就可以加入到内存了。这样,我们就可以采用trie树 /hash_map等直接来统计每个query出现的次数,然后按出现次数做快速/堆/归并排序就可以了。

方案3:

与方案1类似,但在做完hash,分成多个文件后,可以交给多个文件来处理,采用分布式的架构来处理(比如MapReduce),最后再进行合并。

3. 有一个1G大小的一个文件,里面每一行是一个词,词的大小不超过16字节,内存限制大小是1M。返回频数最高的100个词。

方案1:顺序读文件中,对于每个词x,取clip_image014,然后按照该值存到5000 个小文件(记为clip_image016)中。这样每个文件大概是 200k左右。如果其中的有的文件超过了1M大小,还可以按照类似的方法继续往下分,知道分解得到的小文件的大小都不超过1M。对每个小文件,统计每个文 件中出现的词以及相应的频率(可以采用trie树/hash_map等),并取出出现频率最大的100个词(可以用含100个结点的最小堆),并把100 词及相应的频率存入文件,这样又得到了5000个文件。下一步就是把这5000个文件进行归并(类似与归并排序)的过程了。

4. 海量日志数据,提取出某日访问百度次数最多的那个IP。

方案1:首先是这一天,并且是访问百度的日志中的IP取出来,逐个写入到一个大文件中。注意到IP是32位的,最多有clip_image018个 IP。同样可以采用映射的 方法,比如模1000,把整个大文件映射为1000个小文件,再找出每个小文中出现频率最大的IP(可以采用hash_map进行频率统计,然后再找出频 率最大的几个)及相应的频率。然后再在这1000个最大的IP中,找出那个频率最大的IP,即为所求。

5. 在2.5亿个整数中找出不重复的整数,内存不足以容纳这2.5亿个整数。

方案1:采用2-Bitmap(每个数分配2bit,00表示不存在,01表示出现一次,10表示多次,11无意义)进行,共需内存clip_image020内存,还可以接受。然后扫 描这2.5亿个整数,查看Bitmap中相对应位,如果是00变01,01变10,10保持不变。所描完事后,查看bitmap,把对应位是01的整数输 出即可。

方案2:也可采用上题类似的方法,进行划分小文件的方法。然后在小文件中找出不重复的整数,并排序。然后再进行归并,注意去除重复的元素。

6. 海量数据分布在100台电脑中,想个办法高校统计出这批数据的TOP10。

方案1:

s 在每台电脑上求出TOP10,可以采用包含10个元素的堆完成(TOP10小,用最大堆,TOP10大,用最小堆)。比如求TOP10大,我们首先取前 10个元素调整成最小堆,如果发现,然后扫描后面的数据,并与堆顶元素比较,如果比堆顶元素大,那么用该元素替换堆顶,然后再调整为最小堆。最后堆中的元 素就是TOP10大。

s 求出每台电脑上的TOP10后,然后把这100台电脑上的TOP10组合起来,共1000个数据,再利用上面类似的方法求出TOP10就可以了。

7. 怎么在海量数据中找出重复次数最多的一个?

方案1:先做hash,然后求模映射为小文件,求出每个小文件中重复次数最多的一个,并记录重复次数。然后找出上一步求出的数据中重复次数最多的一 个就是所求(具体参考前面的题)。

8. 上千万或上亿数据(有重复),统计其中出现次数最多的钱N个数据。

方案1:上千万或上亿的数据,现在的机器的内存应该能存下。所以考虑采用hash_map/搜索二叉树/红黑树等来进行统计次数。然后就是取出前N 个出现次数最多的数据了,可以用第6题提到的堆机制完成。

9. 1000万字符串,其中有些是重复的,需要把重复的全部去掉,保留没有重复的字符串。请怎么设计和实现?

方案1:这题用trie树比较合适,hash_map也应该能行。

10. 一个文本文件,大约有一万行,每行一个词,要求统计出其中最频繁出现的前10个词,请给出思想,给出时间复杂度分析。

方案1:这题是考虑时间效率。用trie树统计每个词出现的次数,时间复杂度是O(n*le)(le表示单词的平准长度)。然后是找出出现最频繁的 前10个词,可以用堆来实现,前面的题中已经讲到了,时间复杂度是O(n*lg10)。所以总的时间复杂度,是O(n*le)与O(n*lg10)中较大 的哪一个。

11. 一个文本文件,找出前10个经常出现的词,但这次文件比较长,说是上亿行或十亿行,总之无法一次读入内存,问最优解。

方案1:首先根据用hash并求模,将文件分解为多个小文件,对于单个文件利用上题的方法求出每个文件件中10个最常出现的词。然后再进行归并处 理,找出最终的10个最常出现的词。

12. 100w个数中找出最大的100个数。

方案1:在前面的题中,我们已经提到了,用一个含100个元素的最小堆完成。复杂度为O(100w*lg100)。

方案2:采用快速排序的思想,每次分割之后只考虑比轴大的一部分,知道比轴大的一部分在比100多的时候,采用传统排序算法排序,取前100个。复 杂度为O(100w*100)。

方案3:采用局部淘汰法。选取前100个元素,并排序,记为序列L。然后一次扫描剩余的元素x,与排好序的100个元素中最小的元素比,如果比这个 最小的要大,那么把这个最小的元素删除,并把x利用插入排序的思想,插入到序列L中。依次循环,知道扫描了所有的元素。复杂度为O(100w*100)。

13. 寻找热门查询:

搜索引擎会通过日志文件把用户每次检索使用的所有检索串都记录下来,每个查询串的长度为1-255字节。假设目前有一千万个记录,这些查询串的重复 读比较高,虽然总数是1千万,但是如果去除重复和,不超过3百万个。一个查询串的重复度越高,说明查询它的用户越多,也就越热门。请你统计最热门的10个 查询串,要求使用的内存不能超过1G。

(1) 请描述你解决这个问题的思路;

(2) 请给出主要的处理流程,算法,以及算法的复杂度。

方案1:采用trie树,关键字域存该查询串出现的次数,没有出现为0。最后用10个元素的最小推来对出现频率进行排序。

14. 一共有N个机器,每个机器上有N个数。每个机器最多存O(N)个数并对它们操作。如何找到clip_image022个数中的中数?

方案1:先大体估计一下这些数的范围,比如这里假设这些数都是32位无符号整数(共有clip_image018[1]个)。我们把0到clip_image024的整数划分为N个范围段,每 个段包含clip_image026个整数。比如,第一个段位0 到clip_image028,第二段为clip_image026[1]到clip_image030,…,第N个段为clip_image032到clip_image024[1]。然后,扫描每个机器 上的N个数,把属于第一个区段的数放到第一个机器上,属于第二个区段的数放到第二个机器上,…,属于第N个区段的数放到第N个机器上。注意这个过程每个机 器上存储的数应该是O(N)的。下面我们依次统计每个机器上数的个数,一次累加,直到找到第k个机器,在该机器上累加的数大于或等于clip_image034,而在第k-1个机器上的累 加数小于clip_image034[1],并把这个数记为x。 那么我们要找的中位数在第k个机器中,排在第clip_image036位。然后我们对第k个机器的 数排序,并找出第clip_image036[1]个数,即为所求的中位 数。复杂度是clip_image038的。

方案2:先对每台机器上的数进行排序。排好序后,我们采用归并排序的思想,将这N个机器上的数归并起来得到最终的排序。找到第clip_image034[2]个便是所求。复杂度是clip_image040的。

15. 最大间隙问题

给定n个实数clip_image042,求着n个实数在实轴上向量 2个数之间的最大差值,要求线性的时间算法。

方案1:最先想到的方法就是先对这n个数据进行排序,然后一遍扫描即可确定相邻的最大间隙。但该方法不能满足线性时间的要求。故采取如下方法:

s 找到n个数据中最大和最小数据max和min。

s 用n-2个点等分区间[min, max],即将[min, max]等分为n-1个区间(前闭后开区间),将这些区间看作桶,编号为clip_image044,且桶clip_image046的上界和桶i+1的下届相同, 即每个桶的大小相同。每个桶的大小为:clip_image048。实际上,这些桶的边界构 成了一个等差数列(首项为min,公差为clip_image050),且认为将min放入第一 个桶,将max放入第n-1个桶。

s 将n个数放入n-1个桶中:将每个元素clip_image052分配到某个桶(编号为 index),其中clip_image054,并求出分到每个桶的最大 最小数据。

s 最大间隙:除最大最小数据max和min以外的n-2个数据放入n-1个桶中,由抽屉原理可知至少有一个桶是空的,又因为每个桶的大小相同,所以最大间隙 不会在同一桶中出现,一定是某个桶的上界和气候某个桶的下界之间隙,且该量筒之间的桶(即便好在该连个便好之间的桶)一定是空桶。也就是说,最大间隙在桶 i的上界和桶j的下界之间产生clip_image056。一遍扫描即可完成。

16. 将多个集合合并成没有交集的集合:给定一个字符串的集合,格式如:clip_image058。要求将其中交集不为空的 集合合并,要求合并完成的集合之间无交集,例如上例应输出clip_image060。

(1) 请描述你解决这个问题的思路;

(2) 给出主要的处理流程,算法,以及算法的复杂度;

(3) 请描述可能的改进。

方案1:采用并查集。首先所有的字符串都在单独的并查集中。然后依扫描每个集合,顺序合并将两个相邻元素合并。例如,对于clip_image062,首先查看aaa和bbb是 否在同一个并查集中,如果不在,那么把它们所在的并查集合并,然后再看bbb和ccc是否在同一个并查集中,如果不在,那么也把它们所在的并查集合并。接 下来再扫描其他的集合,当所有的集合都扫描完了,并查集代表的集合便是所求。复杂度应该是O(NlgN)的。改进的话,首先可以记录每个节点的根结点,改 进查询。合并的时候,可以把大的和小的进行合,这样也减少复杂度。

17. 最大子序列与最大子矩阵问题

数组的最大子序列问题:给定一个数组,其中元素有正,也有负,找出其中一个连续子序列,使和最大。

方案1:这个问题可以动态规划的思想解决。设clip_image064表示以第i个元素clip_image066结尾的最大子序列,那么显然clip_image068。基于这一点可以很快用代 码实现。

最大子矩阵问题:给定一个矩阵(二维数组),其中数据有大有小,请找一个子矩阵,使得子矩阵的和最大,并输出这个和。

方案1:可以采用与最大子序列类似的思想来解决。如果我们确定了选择第i列和第j列之间的元素,那么在这个范围内,其实就是一个最大子序列问题。如 何确定第i列和第j列可以词用暴搜的方法进行。


海量数据1.1
大数据量的问题是很多面试笔试中经常出现的问题,比如baidu google 腾讯 这样的一些涉及到海量数据的公司经常会问到。

下面的方法是我对海量数据的处理方法进行了一个一般性的总结,当然这些方法可能并不能完全覆盖所有的问题,但是这样的一些方法也基本可以处理绝大多数遇到的问题。下面的一些问题基本直接来源于公司的面试笔试题目,方法不一定最优,如果你有更好的处理方法,欢迎与我讨论。

1.Bloom filter

适用范围:可以用来实现数据字典,进行数据的判重,或者集合求交集

基本原理及要点:
对于原理来说很简单,位数组+k个独立hash函数。将hash函数对应的值的位数组置1,查找时如果发现所有hash函数对应位都是1说明存在,很明显这个过程并不保证查找的结果是100%正确的。同时也不支持删除一个已经插入的关键字,因为该关键字对应的位会牵动到其他的关键字。所以一个简单的改进就是 counting Bloom filter,用一个counter数组代替位数组,就可以支持删除了。

还有一个比较重要的问题,如何根据输入元素个数n,确定位数组m的大小及hash函数个数。当hash函数个数k=(ln2)*(m/n)时错误率最小。在错误率不大于E的情况下,m至少要等于n*lg(1/E)才能表示任意n个元素的集合。但m还应该更大些,因为还要保证bit数组里至少一半为 0,则m应该>=nlg(1/E)*lge 大概就是nlg(1/E)1.44倍(lg表示以2为底的对数)。

举个例子我们假设错误率为0.01,则此时m应大概是n的13倍。这样k大概是8个。

注意这里m与n的单位不同,m是bit为单位,而n则是以元素个数为单位(准确的说是不同元素的个数)。通常单个元素的长度都是有很多bit的。所以使用bloom filter内存上通常都是节省的。

扩展:
Bloom filter将集合中的元素映射到位数组中,用k(k为哈希函数个数)个映射位是否全1表示元素在不在这个集合中。Counting bloom filter(CBF)将位数组中的每一位扩展为一个counter,从而支持了元素的删除操作。Spectral Bloom Filter(SBF)将其与集合元素的出现次数关联。SBF采用counter中的最小值来近似表示元素的出现频率。

问题实例:给你A,B两个文件,各存放50亿条URL,每条URL占用64字节,内存限制是4G,让你找出A,B文件共同的URL。如果是三个乃至n个文件呢?

根据这个问题我们来计算下内存的占用,4G=2^32大概是40亿*8大概是340亿,n=50亿,如果按出错率0.01算需要的大概是650亿个 bit。现在可用的是340亿,相差并不多,这样可能会使出错率上升些。另外如果这些urlip是一一对应的,就可以转换成ip,则大大简单了。

2.Hashing

适用范围:快速查找,删除的基本数据结构,通常需要总数据量可以放入内存

基本原理及要点:
hash函数选择,针对字符串,整数,排列,具体相应的hash方法。
碰撞处理,一种是open hashing,也称为拉链法;另一种就是closed hashing,也称开地址法,opened addressing。

扩展:
d-left hashing中的d是多个的意思,我们先简化这个问题,看一看2-left hashing。2-left hashing指的是将一个哈希表分成长度相等的两半,分别叫做T1和T2,给T1和T2分别配备一个哈希函数,h1和h2。在存储一个新的key时,同时用两个哈希函数进行计算,得出两个地址h1[key]和h2[key]。这时需要检查T1中的h1[key]位置和T2中的h2[key]位置,哪一个位置已经存储的(有碰撞的)key比较多,然后将新key存储在负载少的位置。如果两边一样多,比如两个位置都为空或者都存储了一个key,就把新key 存储在左边的T1子表中,2-left也由此而来。在查找一个key时,必须进行两次hash,同时查找两个位置。

问题实例:
1).海量日志数据,提取出某日访问百度次数最多的那个IP。

IP的数目还是有限的,最多2^32个,所以可以考虑使用hash将ip直接存入内存,然后进行统计。

3.bit-map

适用范围:可进行数据的快速查找,判重,删除,一般来说数据范围是int的10倍以下

基本原理及要点:使用bit数组来表示某些元素是否存在,比如8位电话号码

扩展:bloom filter可以看做是对bit-map的扩展

问题实例:

1)已知某个文件内包含一些电话号码,每个号码为8位数字,统计不同号码的个数。

8位最多99 999 999,大概需要99m个bit,大概10几m字节的内存即可。

2)2.5亿个整数中找出不重复的整数的个数,内存空间不足以容纳这2.5亿个整数。

将bit-map扩展一下,用2bit表示一个数即可,0表示未出现,1表示出现一次,2表示出现2次及以上。或者我们不用2bit来进行表示,我们用两个bit-map即可模拟实现这个2bit-map。

4.堆

适用范围:海量数据前n大,并且n比较小,堆可以放入内存

基本原理及要点:最大堆求前n小,最小堆求前n大。方法,比如求前n小,我们比较当前元素与最大堆里的最大元素,如果它小于最大元素,则应该替换那个最大元素。这样最后得到的n个元素就是最小的n个。适合大数据量,求前n小,n的大小比较小的情况,这样可以扫描一遍即可得到所有的前n元素,效率很高。

扩展:双堆,一个最大堆与一个最小堆结合,可以用来维护中位数。

问题实例:
1)100w个数中找最大的前100个数。

用一个100个元素大小的最小堆即可。

5.双层桶划分

适用范围:第k大,中位数,不重复或重复的数字

基本原理及要点:因为元素范围很大,不能利用直接寻址表,所以通过多次划分,逐步确定范围,然后最后在一个可以接受的范围内进行。可以通过多次缩小,双层只是一个例子。

扩展:

问题实例:
1).2.5亿个整数中找出不重复的整数的个数,内存空间不足以容纳这2.5亿个整数。

有点像鸽巢原理,整数个数为2^32,也就是,我们可以将这2^32个数,划分为2^8个区域(比如用单个文件代表一个区域),然后将数据分离到不同的区域,然后不同的区域在利用bitmap就可以直接解决了。也就是说只要有足够的磁盘空间,就可以很方便的解决。

2).5亿个int找它们的中位数。

这个例子比上面那个更明显。首先我们将int划分为2^16个区域,然后读取数据统计落到各个区域里的数的个数,之后我们根据统计结果就可以判断中位数落到那个区域,同时知道这个区域中的第几大数刚好是中位数。然后第二次扫描我们只统计落在这个区域中的那些数就可以了。

实际上,如果不是int是int64,我们可以经过3次这样的划分即可降低到可以接受的程度。即可以先将int64分成2^24个区域,然后确定区域的第几大数,在将该区域分成2^20个子区域,然后确定是子区域的第几大数,然后子区域里的数的个数只有2^20,就可以直接利用direct addr table进行统计了。

6.数据库索引

适用范围:大数据量的增删改查

基本原理及要点:利用数据的设计实现方法,对海量数据的增删改查进行处理。
扩展:
问题实例:


7.倒排索引(Inverted index)

适用范围:搜索引擎,关键字查询

基本原理及要点:为何叫倒排索引?一种索引方法,被用来存储在全文搜索下某个单词在一个文档或者一组文档中的存储位置的映射。

以英文为例,下面是要被索引的文本:
T0 = "it is what it is"
T1 = "what is it"
T2 = "it is a banana"
我们就能得到下面的反向文件索引:
"a":      {2}
"banana": {2}
"is":     {0, 1, 2}
"it":     {0, 1, 2}
"what":   {0, 1}
检索的条件"what", "is" 和 "it" 将对应集合的交集。

正向索引开发出来用来存储每个文档的单词的列表。正向索引的查询往往满足每个文档有序频繁的全文查询和每个单词在校验文档中的验证这样的查询。在正向索引中,文档占据了中心的位置,每个文档指向了一个它所包含的索引项的序列。也就是说文档指向了它包含的那些单词,而反向索引则是单词指向了包含它的文档,很容易看到这个反向的关系。

扩展:

问题实例:文档检索系统,查询那些文件包含了某单词,比如常见的学术论文的关键字搜索。

8.外排序

适用范围:大数据的排序,去重

基本原理及要点:外排序的归并方法,置换选择 败者树原理,最优归并树

扩展:

问题实例:
1).有一个1G大小的一个文件,里面每一行是一个词,词的大小不超过16个字节,内存限制大小是1M。返回频数最高的100个词。

这个数据具有很明显的特点,词的大小为16个字节,但是内存只有1m做hash有些不够,所以可以用来排序。内存可以当输入缓冲区使用。

9.trie树

适用范围:数据量大,重复多,但是数据种类小可以放入内存

基本原理及要点:实现方式,节点孩子的表示方式

扩展:压缩实现。

问题实例:
1).有10个文件,每个文件1G, 每个文件的每一行都存放的是用户的query,每个文件的query都可能重复。要你按照query的频度排序 。

2).1000万字符串,其中有些是相同的(重复),需要把重复的全部去掉,保留没有重复的字符串。请问怎么设计和实现?

3).寻找热门查询:查询串的重复度比较高,虽然总数是1千万,但如果除去重复后,不超过3百万个,每个不超过255字节。

10.分布式处理 mapreduce

适用范围:数据量大,但是数据种类小可以放入内存

基本原理及要点:将数据交给不同的机器去处理,数据划分,结果归约。

扩展:

问题实例:

1).The canonical example application of MapReduce is a process to count the appearances of

each different word in a set of documents:
void map(String name, String document):
// name: document name
// document: document contents
for each word w in document:
    EmitIntermediate(w, 1);

void reduce(String word, Iterator partialCounts):
// key: a word
// values: a list of aggregated partial counts
int result = 0;
for each v in partialCounts:
    result += ParseInt(v);
Emit(result);
Here, each document is split in words, and each word is counted initially with a "1" value by

the Map function, using the word as the result key. The framework puts together all the pairs

with the same key and feeds them to the same call to Reduce, thus this function just needs to

sum all of its input values to find the total appearances of that word.

2).海量数据分布在100台电脑中,想个办法高效统计出这批数据的TOP10。

3).一共有N个机器,每个机器上有N个数。每个机器最多存O(N)个数并对它们操作。如何找到N^2个数的中数(median)?


经典问题分析

上千万or亿数据(有重复),统计其中出现次数最多的前N个数据,分两种情况:可一次读入内存,不可一次读入。

可用思路:trie树+堆,数据库索引,划分子集分别统计,hash,分布式计算,近似统计,外排序

所谓的是否能一次读入内存,实际上应该指去除重复后的数据量。如果去重后数据可以放入内存,我们可以为数据建立字典,比如通过 map,hashmap,trie,然后直接进行统计即可。当然在更新每条数据的出现次数的时候,我们可以利用一个堆来维护出现次数最多的前N个数据,当然这样导致维护次数增加,不如完全统计后在求前N大效率高。

如果数据无法放入内存。一方面我们可以考虑上面的字典方法能否被改进以适应这种情形,可以做的改变就是将字典存放到硬盘上,而不是内存,这可以参考数据库的存储方法。

当然还有更好的方法,就是可以采用分布式计算,基本上就是map-reduce过程,首先可以根据数据值或者把数据hash(md5)后的值,将数据按照范围划分到不同的机子,最好可以让数据划分后可以一次读入内存,这样不同的机子负责处理各种的数值范围,实际上就是map。得到结果后,各个机子只需拿出各自的出现次数最多的前N个数据,然后汇总,选出所有的数据中出现次数最多的前N个数据,这实际上就是reduce过程。

实际上可能想直接将数据均分到不同的机子上进行处理,这样是无法得到正确的解的。因为一个数据可能被均分到不同的机子上,而另一个则可能完全聚集到一个机子上,同时还可能存在具有相同数目的数据。比如我们要找出现次数最多的前100个,我们将1000万的数据分布到10台机器上,找到每台出现次数最多的前 100个,归并之后这样不能保证找到真正的第100个,因为比如出现次数最多的第100个可能有1万个,但是它被分到了10台机子,这样在每台上只有1千个,假设这些机子排名在1000个之前的那些都是单独分布在一台机子上的,比如有1001个,这样本来具有1万个的这个就会被淘汰,即使我们让每台机子选出出现次数最多的1000个再归并,仍然会出错,因为可能存在大量个数为1001个的发生聚集。因此不能将数据随便均分到不同机子上,而是要根据hash 后的值将它们映射到不同的机子上处理,让不同的机器处理一个数值范围。

而外排序的方法会消耗大量的IO,效率不会很高。而上面的分布式方法,也可以用于单机版本,也就是将总的数据根据值的范围,划分成多个不同的子文件,然后逐个处理。处理完毕之后再对这些单词的及其出现频率进行一个归并。实际上就可以利用一个外排序的归并过程。

另外还可以考虑近似计算,也就是我们可以通过结合自然语言属性,只将那些真正实际中出现最多的那些词作为一个字典,使得这个规模可以放入内存。

出处:http://bbs.xjtu.edu.cn
作者phylips@bmy

参考文献:
http://blog.csdn.net/jiaomeng/archive/2007/03/08/1523940.aspx       d-Left Hashing
http://blog.csdn.net/jiaomeng/archive/2007/01/27/1495500.aspx
http://en.wikipedia.org/wiki/Bloom_filter
http://hi.baidu.com/xdzhang_china/blog/item/2847777e83fb020229388a15.html 应用Bloom Filter的几个小技巧
http://zh.wikipedia.org/wiki/%E5%80%92%E6%8E%92%E7%B4%A2%E5%BC%95

海量数据1.2
笔者在实际工作中,有幸接触到海量的数据处理问题,海量数据是指数据量过大,数据格式复杂,数据中的随机情况多,不便于分类和处理的数据。对其进行处理是一项艰巨而复杂的任务,原因有以下几个方面:


    1. 数据量过大。数据中什么情况都可能存在。如果说有10条数据,那么大不了每条去逐一检查,人为处 理;如果有上百条数据,也可以考虑;如果数据上到千万级别,甚至过亿,那就不是手工能解决的了,必须通过工具或者程序进行处理。而海量的数据中,什么情况 都可能存在,例如,数据中某处格式出了问题,尤其在程序处理时,前面还能正常处理,突然到了某个地方问题出现了,程序终止了。
    2. 软硬件要求高。系统资源占用率高。对海量的数据进行处理,除了好的方法,最重要的就是合理使用工具,合理分配系统资源。一般情况,如果处理的数据超过TB级,小型机是要考虑的,普通的服务器如果有好的方法也可以考虑,不过也必须加大CPU和内存。
    3. 要求很高的处理方法和技巧。这也是本文的写作目的所在,好的处理方法是一位工程师长期工作经验的积累,也是个人经验的总结。没有通用的处理方法,但有通用的原理和规则。


那么处理海量数据有哪些经验和技巧呢?我把我所知道的罗列一下,以供大家参考:
确定好的建模方法和处理方案。对海量数据的处理,明确切实可行的处理方法和流程最为关键。在建立处理模型时要充分考虑到海量数据数据量大、数据格式复杂的特点,建立好的处理模型。好的处理模型应该是处理中最快的,能够便于扩展,便于处理更大的数据量,便于实施等等。

选用优秀的数据库工具。 现在的数据库工具厂家比较多,处理海量数据对所使用的数据库工具要求比较高,一般使用Oracle或者DB2,微软公司最近发布的SQL Server 2005性能也不错。另外在BI领域:数据库,数据仓库,多维数据库,数据挖掘等相关工具也要进行选择,像好的ETL工具和好的OLAP工具都十分必要, 例如Informatic、Eassbase等等。笔者在实际数据分析项目中,对每天6000万条的日志数据进行处理,使用SQL Server 2000需要花费6小时,而使用SQL Server 2005只需要花费3小时。

编写优良的程序代码。处理数据离不开优秀的程序代码,尤其在进行复杂数据处理时,必须使用程序。好的程序代码对数据的处理至关重要,这不仅仅是数据处理准确度的问题,更是数据处理效率的问题。良好的程序代码应该包含好的算法、好的处理流程、好的效率、好的异常处理机制等等。

对海量数据进行分区操作。 对海量数据进行分区操作十分必要,例如针对按年份存取的数据,我们可以按年进行分区,不同的数据库有不同的分区方式,不过处理机制大体相同。例如SQL Server的数据库分区是将不同的数据存于不同的文件组下,而不同的文件组存于不同的磁盘分区下,这样将数据分散开,减小磁盘I/O,减小了系统负荷, 而且还可以将日志、索引存放于不同的分区下。

建立广泛的索引。对海量的数据处理,对大表 建立索引是必行的,建立索引要考虑到具体情况,例如针对大表的分组、排序等字段,都要建立相应索引,一般还可以建立复合索引,对经常插入的表则建立索引时 要小心。笔者在处理数据时,曾经在一个ETL流程中,当插入表时,首先删除索引,插入完毕,建立索引,并实施聚合操作,聚合完成后,再次插入前还是删除索 引,所以索引要用到好的时机,索引的填充因子和聚集、非聚集索引都要考虑。

提高硬件条件,加大CPU和内存。 对海量数据数据处理,必须考虑硬件条件,使用高配置服务器的。硬件条件包括加大内存,加入更多更强劲的CPU,加大硬盘空间等等。笔者在处理2TB数据 时,使用的是4个CPU,16GB内存,发现有时还会出现内存不足现象,需要进行其它方面的优化,如果这时没有足够的硬件条件做支撑,是万万不行的。

建立缓存机制。当数据量增加时,一般的处理工具都要考虑到缓存问题。缓存大小设置的好坏也关系到数据处理的成败,例如,笔者在处理2亿条数据聚合操作时,缓存设置为10万条/Buffer,这对于这个级别的数据量是可行的。

加大虚拟内存。 如果系统资源有限,内存提示不足,则可以靠增加虚拟内存来解决。笔者在实际项目中曾经遇到针对18亿条的数据进行处理,内存为1GB,1个P4 2.4G的CPU,对这么大的数据量进行聚合操作是有问题的,提示内存不足,后来采用了加大虚拟内存的方法来解决,在6块磁盘分区上分别建立了6个 4096M的磁盘分区,用于虚拟内存,这样虚拟的内存则增加为4096*6 + 1024 = 25600 M,解决了数据处理中的内存不足问题。

分批处理。 海量数据处理难是因为数据量大,那么解决海量数据处理难的问题其中一个技巧是减少数据量。可以对海量数据分批处理,处理后的数据再进行合并操作,这样逐个 击破,有利于小数据量的处理,不至于面对大数据量带来的问题。但这种方法也要因时因势进行,如果不允许拆分数据,还需要另想办法。不过一般按天、月、年等 存储的数据,都可以采用先分后合的方法,对数据进行分开处理。
使用临时表和中间表。数据量增加时,处理中要考虑提前汇总。这样做的目的是化整为 零,大表变小表,分块处理完成后,再利用一定的规则进行合并,处理过程中的临时表的使用和中间结果的保存都非常重要,对于超海量的数据,如果大表处理不 了,只能拆分为多个小表。如果处理过程中需要多步汇总操作,可按汇总步骤一步步来,不要一条语句完成,一口气吃成一个胖子。

优化查询SQL语句。 在对海量数据进行查询处理过程中,查询的SQL语句的性能对查询效率的影响是非常大的,编写高效优良的SQL脚本和存储过程是数据库工作人员的职责,也是 检验数据库工作人员水平的一个标准,在对SQL语句的编写过程中,例如减少关联,少用或不用游标,设计好高效的数据库表结构等都十分必要。笔者在工作中试 着对1亿行的数据使用游标,运行3个小时没有出结果,这时一定要改用程序处理了。

使用文本格式进行处理。 对一般的数据处理可以使用数据库,如果对复杂的数据处理,必须借助程序,那么在程序操作数据库和程序操作文本之间选择,是一定要选择程序操作文本的。原因 为:程序操作文本速度快;对文本进行处理不容易出错;文本的存储不受限制等等。例如一般的海量的网络日志都是文本格式或者csv格式(文本格式),对它进 行处理牵扯到数据清洗,是要利用程序进行处理的,而不建议导入数据库再做清洗。

定制强大的清洗规则和出错处理机制。海量数据中存在着不一致性,极有可能出现某处的瑕疵。例如,同样的数据中的时间字段,有的可能为非标准的时间,出现的原因可能为应用程序的错误,系统的错误等等。在进行数据处理时,必须制定强大的数据清洗规则和出错处理机制。

建立视图或者物化视图。视图中的数据来源于基表,对海量数据的处理,可以将数据按一定的规则分散到各个基表中,查询或处理过程中可以基于视图进行,这样分散了磁盘I/O,正如10根绳子吊着一根柱子和一根绳子吊着一根柱子的区别。

避免使用32位服务器(极端情况)。目前的计算机很多都是32位的,那么编写的程序对内存的需要便受限制,而很多的海量数据处理是必须大量消耗内存的,这便要求更好性能的服务器,其中对位数的限制也十分重要。

考虑操作系统问题。海量数据处理过程中,除了对数据库、处理程序等要求比较高以外,对操作系统的要求也放到了重要的位置,一般是必须使用服务器的,而且对系统的安全性和稳定性等要求也比较高。尤其对操作系统自身的缓存机制、临时空间的处理等问题都需要综合考虑。

使用数据仓库和多维数据库存储。数据量加大是一定要考虑OLAP的,传统的报表可能5、6个小时出来结果,而基于Cube的查询可能只需要几分钟,因此处理海量数据的利器是OLAP多维分析,即建立数据仓库,建立多维数据集,基于多维数据集进行报表展现和数据挖掘等等。

使用采样数据,进行数据挖掘。 基于海量数据的数据挖掘正在逐步兴起,面对着超海量的数据,一般的挖掘软件或算法往往采用数据抽样的方式进行处理,这样的误差不会很大,大大提高了处理效 率和处理的成功率。一般采样时要注意数据的完整性,防止过大的偏差。笔者曾经对1亿2千万行的表数据进行采样,抽取出400万行,经测试软件测试处理的误 差仅为千分之五,客户可以接受。
还有一些方法,需要在不同的情况和场合下运用,例如使用代理键等操作,这样的好处是加快了聚合时间,因为对数值型的聚合比对字符型的聚合快得多。类似的情况需要针对不同的需求进行处理。
海量数据是发展趋势,对数据分析和挖掘也越来越重要,从海量数据中提取有用信息重要而紧迫,这便要求处理要准确,精度要高,而且处理时间要短,得到有价值信息要快,所以,对海量数据的研究很有前途,也很值得进行广泛深入的研究。



海量数据1.3
L1、HTML静态化
其实大家都知道,效率最高、消耗最小的就是纯静态化的html页面,所以我们尽可能使我们的网站上的页面采 用静态页面来实现,这个最简单的方法其实也是最有效的方法。但是对于大量内容并且频繁更新的网站,我们无法全部手动去挨个实现,于是出现了我们常见的信息 发布系统CMS,像我们常访问的各个门户站点的新闻频道,甚至他们的其他频道,都是通过信息发布系统来管理和实现的,信息发布系统可以实现最简单的信息录 入自动生成静态页面,还能具备频道管理、权限管理、自动抓取等功能,对于一个大型网站来说,拥有一套高效、可管理的CMS是必不可少的。

除了门户和信息发布类型的网站,对于交互性要求很高的社区类型网站来说,尽可能的静态化也是提高性能的必要手段,将社区内的帖子、文章进行实时的静态化,有更新的时候再重新静态化也是大量使用的策略,像Mop的大杂烩就是使用了这样的策略,网易社区等也是如此。

同 时,html静态化也是某些缓存策略使用的手段,对于系统中频繁使用数据库查询但是内容更新很小的应用,可以考虑使用html静态化来实现,比如论坛中论 坛的公用设置信息,这些信息目前的主流论坛都可以进行后台管理并且存储再数据库中,这些信息其实大量被前台程序调用,但是更新频率很小,可以考虑将这部分 内容进行后台更新的时候进行静态化,这样避免了大量的数据库访问请求。

2、图片服务器分离
大家知道,对于Web服务器来说,不管 是 Apache、IIS还是其他容器,图片是最消耗资源的,于是我们有必要将图片与页面进行分离,这是基本上大型网站都会采用的策略,他们都有独立的图片服 务器,甚至很多台图片服务器。这样的架构可以降低提供页面访问请求的服务器系统压力,并且可以保证系统不会因为图片问题而崩溃,在应用服务器和图片服务器 上,可以进行不同的配置优化,比如apache在配置ContentType的时候可以尽量少支持,尽可能少的LoadModule,保证更高的系统消耗 和执行效率。

3、数据库集群和库表散列
大型网站都有复杂的应用,这些应用必须使用数据库,那么在面对大量访问的时候,数据库的瓶颈很快就能显现出来,这时一台数据库将很快无法满足应用,于是我们需要使用数据库集群或者库表散列。

在数据库集群方面,很多数据库都有自己的解决方案,Oracle、Sybase等都有很好的方案,常用的MySQL提供的Master/Slave也是类似的方案,您使用了什么样的DB,就参考相应的解决方案来实施即可。

上 面提到的数据库集群由于在架构、成本、扩张性方面都会受到所采用DB类型的限制,于是我们需要从应用程序的角度来考虑改善系统架构,库表散列是常用并且最 有效的解决方案。我们在应用程序中安装业务和应用或者功能模块将数据库进行分离,不同的模块对应不同的数据库或者表,再按照一定的策略对某个页面或者功能 进行更小的数据库散列,比如用户表,按照用户ID进行表散列,这样就能够低成本的提升系统的性能并且有很好的扩展性。sohu的论坛就是采用了这样的架 构,将论坛的用户、设置、帖子等信息进行数据库分离,然后对帖子、用户按照板块和ID进行散列数据库和表,最终可以在配置文件中进行简单的配置便能让系统 随时增加一台低成本的数据库进来补充系统性能。

4、缓存
缓存一词搞技术的都接触过,很多地方用到缓存。网站架构和网站开发中的缓存也是非常重要。这里先讲述最基本的两种缓存。高级和分布式的缓存在后面讲述。
架构方面的缓存,对Apache比较熟悉的人都能知道Apache提供了自己的缓存模块,也可以使用外加的Squid模块进行缓存,这两种方式均可以有效的提高Apache的访问响应能力。
网 站程序开发方面的缓存,Linux上提供的Memory Cache是常用的缓存接口,可以在web开发中使用,比如用Java开发的时候就可以调用MemoryCache对一些数据进行缓存和通讯共享,一些大 型社区使用了这样的架构。另外,在使用web语言开发的时候,各种语言基本都有自己的缓存模块和方法,PHP有Pear的Cache模块,Java就更多 了,.net不是很熟悉,相信也肯定有。

5、镜像
镜像是大型网站常采用的提高性能和数据安全性的方式,镜像的技术可以解决不同网 络接入商和地域带来的用户访问速度差异,比如ChinaNet和EduNet之间的差异就促使了很多网站在教育网内搭建镜像站点,数据进行定时更新或者实 时更新。在镜像的细节技术方面,这里不阐述太深,有很多专业的现成的解决架构和产品可选。也有廉价的通过软件实现的思路,比如Linux上的rsync等 工具。

6、负载均衡
负载均衡将是大型网站解决高负荷访问和大量并发请求采用的终极解决办法。
负载均衡技术发展了多年,有很多专业的服务提供商和产品可以选择,我个人接触过一些解决方法,其中有两个架构可以给大家做参考。
硬件四层交换
第 四层交换使用第三层和第四层信息包的报头信息,根据应用区间识别业务流,将整个区间段的业务流分配到合适的应用服务器进行处理。 第四层交换功能就象是虚 IP,指向物理服务器。它传输的业务服从的协议多种多样,有HTTP、FTP、NFS、Telnet或其他协议。这些业务在物理服务器基础上,需要复杂的 载量平衡算法。在IP世界,业务类型由终端TCP或UDP端口地址来决定,在第四层交换中的应用区间则由源端和终端IP地址、TCP和UDP端口共同决 定。
在硬件四层交换产品领域,有一些知名的产品可以选择,比如Alteon、F5等,这些产品很昂贵,但是物有所值,能够提供非常优秀的性能和很灵活的管理能力。Yahoo中国当初接近2000台服务器使用了三四台Alteon就搞定了。

软件四层交换
大家知道了硬件四层交换机的原理后,基于OSI模型来实现的软件四层交换也就应运而生,这样的解决方案实现的原理一致,不过性能稍差。但是满足一定量的压力还是游刃有余的,有人说软件实现方式其实更灵活,处理能力完全看你配置的熟悉能力。
软 件四层交换我们可以使用Linux上常用的LVS来解决,LVS就是Linux Virtual Server,他提供了基于心跳线heartbeat的实时灾难应对解决方案,提高系统的鲁棒性,同时可供了灵活的虚拟VIP配置和管理功能,可以同时满 足多种应用需求,这对于分布式的系统来说必不可少。

一个典型的使用负载均衡的策略就是,在软件或者硬件四层交换的基础上搭建squid集群,这种思路在很多大型网站包括搜索引擎上被采用,这样的架构低成本、高性能还有很强的扩张性,随时往架构里面增减节点都非常容易。这样的架构我准备空了专门详细整理一下和大家探讨

分享到:
评论

相关推荐

    海量数据处理 海量数据处理

    海量数据是发展趋势,对数据分析和挖掘也越来越重要,从海量数据中提取有用信息重要而紧迫,这便要求处理要准确,精度要高,而且处理时间要短,得到有价值信息要快,所以,对海量数据的研究很有前途,也很值得进行...

    海量数据处理方法

    海量数据处理方法 海量数据处理是指基于海量数据上的存储、处理、操作,解决方案包括巧妙的算法搭配适合的数据结构,如 Bloom filter/Hash/bit-map/堆/数据库或倒排索引/trie 树,以及大而化小、分而治之的策略。...

    基于Hadoop的海量数据存储平台设计与开发

    随着北部湾海洋生态资源的开发和利用,海量海洋科学数据飞速涌现出来,利用海量数据存储平台合理管理和存储这些科学数据显得极为重要.这里提出了一种基于分布式计算技术进行管理和存储海量海洋科学数据方法,构建了海量...

    小滴课堂-海量数据处理商用短链平台大课-资料xiaoecf

    ● 海量数据分库分表+文件存储:Mysql8.0+ShardingSphere多维度分库分表 + 阿里云OSS ● 实时计算+数据处理+存储可视化:Flink1.13 + ClickHouse + HDFS + 数据清洗分层 + Echart可视化数据 ● 分布式链路追踪+监控+...

    海量数据查找数据问题

    从海量素剧中查找中位数,从海量数据中查找一个数,海量数据问题

    海量数据处理的方法

    涉及到海量数据的公司经常会问到。 下面的方法是我对海量数据的处理方法进行了一个一般性的总结, 当然这些方法可能并不能 完全覆盖所有的问题,但是这样的一些方法也基本可以处理绝大多数遇到的问题。 下面的一 些...

    海量数据管理大作业.pdf

    西电海量数据管理大作业,有图,有设计思路

    基于openlayers和canvas绘制海量数据的实现

    基于openlayers和canvas绘制海量数据的实现

    海量数据优化查询SQL

    海量数据 优化 SQL海量数据 优化 SQL海量数据 优化 SQL海量数据 优化 SQL海量数据 优化 SQL海量数据 优化 SQL海量数据 优化 SQL海量数据 优化 SQL海量数据 优化 SQL海量数据 优化 SQL海量数据 优化 SQL海量数据 优化...

    海量数据处理(超经典)

    包含各种不常见的海量数据处理算法和相应的数据结构。确实是一本好资料啊

    Java海量数据分页Bean

    Java海量数据分页Bean, 适用于Oracle(适当修改,适用于任何数据库).功能描述:传入到达页码(具有容错性)、每页记录数、Select查询语句,返回该页所有的记录(整页是List集合,每条记录是一个 HashMap)、总行数、总...

    常用大数据量,海量数据处理方法,算法总结

    常用大数据量,海量数据处理方法,算法总结,非常好的书。

    十道海量数据处理面试题与十个方法大总结

    十道海量数据处理面试题与十个方法大总结,主要面向互联网海量数据应用,海量数据筛选,排序等

    论文研究-多格式海量数据统一存取的索引结构.pdf

    为提高多格式海量数据统一存取效率, 提出了一种基于Hadoop的分布式数据读取模式。并通过对海量数据非主键索引结构的研究, 结合统一存取的描述理念, 提出了基于HDFS的一种可适用于B-树和R-树及其变种的层次索引结构, ...

    MySQL海量数据查询优化策略.

    MySQL海量数据查询优化策略,方法。 1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。 2.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引...

    大数据量_海量数据_处理方法总结

    大数据量的问题是很多面试笔试中经常出现的问题,比如baidu google 腾讯 这样的一些涉及到海量数据的公司经常会问到。 下面的方法是我对海量数据的处理方法进行了一个一般性的总结,当然这些方法可能并不能完全覆盖...

    海量数据面试题整理txt

    海量数据面试题整理海量数据面试题整理海量数据面试题整理海量数据面试题整理

    海量数据处理面试题

    海量数据处理 !!!!!

    海量数据管理报告.zip

    西电海量数据管理实验报告

    将海量数据导入到sql中

    将海量数据导入到sql中将海量数据导入到sql中

Global site tag (gtag.js) - Google Analytics