`
quningstudy
  • 浏览: 52240 次
  • 性别: Icon_minigender_2
  • 来自: 北京
社区版块
存档分类
最新评论

Java多线程小结

阅读更多
Java多线程小结
多线程
线程:是指进程中的一个执行流程。
线程与进程的区别:每个进程都需要操作系统为其分配独立的内存地址空间,而同一进程中的所有线程在同一块地址空间中工作,这些线程可以共享同一块内存和系统资源。


如何创建一个线程?

创建线程有两种方式,如下:
1、 扩展java.lang.Thread类
2、 实现Runnable接口
Thread类代表线程类,它的两个最主要的方法是:
run()——包含线程运行时所执行的代码
Start()——用于启动线程

一个线程只能被启动一次。第二次启动时将会抛出java.lang.IllegalThreadExcetpion异常

线程间状态的转换(如图示)

新建状态:用new语句创建的线程对象处于新建状态,此时它和其它的java对象一样,仅仅在堆中被分配了内存
就绪状态:当一个线程创建了以后,其他的线程调用了它的start()方法,该线程就进入了就绪状态。处于这个状态的线程位于可运行池中,等待获得CPU的使用权
运行状态:处于这个状态的线程占用CPU,执行程序的代码
阻塞状态:当线程处于阻塞状态时,java虚拟机不会给线程分配CPU,直到线程重新进入就绪状态,它才有机会转到运行状态。
阻塞状态分为三种情况:
1、 位于对象等待池中的阻塞状态:当线程运行时,如果执行了某个对象的wait()方法,java虚拟机就回把线程放到这个对象的等待池中
2、 位于对象锁中的阻塞状态,当线程处于运行状态时,试图获得某个对象的同步锁时,如果该对象的同步锁已经被其他的线程占用,JVM就会把这个线程放到这个对象的琐池中。
3、 其它的阻塞状态:当前线程执行了sleep()方法,或者调用了其它线程的join()方法,或者发出了I/O请求时,就会进入这个状态中。

死亡状态:当线程退出了run()方法,就进入了死亡状态,该线程结束了生命周期。
           或者正常退出
           或者遇到异常退出
           Thread类的isAlive()方法判断一个线程是否活着,当线程处于死亡状态或者新建状态时,该方法返回false,在其余的状态下,该方法返回true.

线程调度
线程调度模型:分时调度模型和抢占式调度模型
JVM采用抢占式调度模型。
所谓的多线程的并发运行,其实是指宏观上看,各个线程轮流获得CPU的使用权,分别执行各自的任务。
(线程的调度不是跨平台,它不仅取决于java虚拟机,它还依赖于操作系统)

如果希望明确地让一个线程给另外一个线程运行的机会,可以采取以下的办法之一
1、 调整各个线程的优先级
2、 让处于运行状态的线程调用Thread.sleep()方法
3、 让处于运行状态的线程调用Thread.yield()方法
4、 让处于运行状态的线程调用另一个线程的join()方法

调整各个线程的优先级
Thread类的setPriority(int)和getPriority()方法分别用来设置优先级和读取优先级。
如果希望程序能够移值到各个操作系统中,应该确保在设置线程的优先级时,只使用MAX_PRIORITY、NORM_PRIORITY、MIN_PRIORITY这3个优先级。

线程睡眠:当线程在运行中执行了sleep()方法时,它就会放弃CPU,转到阻塞状态。
线程让步:当线程在运行中执行了Thread类的yield()静态方法时,如果此时具有相同优先级的其它线程处于就绪状态,那么yield()方法将把当前运行的线程放到运行池中并使另一个线程运行。如果没有相同优先级的可运行线程,则yield()方法什么也不做。
Sleep()方法和yield()方法都是Thread类的静态方法,都会使当前处于运行状态的线程放弃CPU,把运行机会让给别的线程,两者的区别在于:
         1、sleep()方法会给其他线程运行的机会,而不考虑其他线程的优先级,因此会给较低线程一个运行的机会;yield()方法只会给相同优先级或者更高优先级的线程一个运行的机会。
2、当线程执行了sleep(long millis)方法后,将转到阻塞状态,参数millis指定睡眠时间;当线程执行了yield()方法后,将转到就绪状态。
          3、sleep()方法声明抛出InterruptedException异常,而yield()方法没有声明抛出任何异常
          4、sleep()方法比yield()方法具有更好的移植性

等待其它线程的结束:join()
          当前运行的线程可以调用另一个线程的 join()方法,当前运行的线程将转到阻塞状态,直到另一个线程运行结束,它才恢复运行。

定时器Timer:在JDK的java.util包中提供了一个实用类Timer, 它能够定时执行特定的任务。

线程的同步
原子操作:根据Java规范,对于基本类型的赋值或者返回值操作,是原子操作。但这里的基本数据类型不包括long和double, 因为JVM看到的基本存储单位是32位,而long 和double都要用64位来表示。所以无法在一个时钟周期内完成。

自增操作(++)不是原子操作,因为它涉及到一次读和一次写。

原子操作:由一组相关的操作完成,这些操作可能会操纵与其它的线程共享的资源,为了保证得到正确的运算结果,一个线程在执行原子操作其间,应该采取其他的措施使得其他的线程不能操纵共享资源。

同步代码块:为了保证每个线程能够正常执行原子操作,Java引入了同步机制,具体的做法是在代表原子操作的程序代码前加上synchronized标记,这样的代码被称为同步代码块。

同步锁:每个JAVA对象都有且只有一个同步锁,在任何时刻,最多只允许一个线程拥有这把锁。

当一个线程试图访问带有synchronized(this)标记的代码块时,必须获得 this关键字引用的对象的锁,在以下的两种情况下,本线程有着不同的命运。
1、 假如这个锁已经被其它的线程占用,JVM就会把这个线程放到本对象的锁池中。本线程进入阻塞状态。锁池中可能有很多的线程,等到其他的线程释放了锁,JVM就会从锁池中随机取出一个线程,使这个线程拥有锁,并且转到就绪状态。
2、 假如这个锁没有被其他线程占用,本线程会获得这把锁,开始执行同步代码块。
(一般情况下在执行同步代码块时不会释放同步锁,但也有特殊情况会释放对象锁
如在执行同步代码块时,遇到异常而导致线程终止,锁会被释放;在执行代码块时,执行了锁所属对象的wait()方法,这个线程会释放对象锁,进入对象的等待池中)

线程同步的特征:
1、 如果一个同步代码块和非同步代码块同时操作共享资源,仍然会造成对共享资源的竞争。因为当一个线程执行一个对象的同步代码块时,其他的线程仍然可以执行对象的非同步代码块。(所谓的线程之间保持同步,是指不同的线程在执行同一个对象的同步代码块时,因为要获得对象的同步锁而互相牵制)
2、 每个对象都有唯一的同步锁
3、 在静态方法前面可以使用synchronized修饰符。
4、 当一个线程开始执行同步代码块时,并不意味着必须以不间断的方式运行,进入同步代码块的线程可以执行Thread.sleep()或者执行Thread.yield()方法,此时它并不释放对象锁,只是把运行的机会让给其他的线程。
5、 Synchronized声明不会被继承,如果一个用synchronized修饰的方法被子类覆盖,那么子类中这个方法不在保持同步,除非用synchronized修饰。

线程安全的类:
1、 这个类的对象可以同时被多个线程安全的访问。
2、 每个线程都能正常的执行原子操作,得到正确的结果。
3、 在每个线程的原子操作都完成后,对象处于逻辑上合理的状态。

释放对象的锁:
1、 执行完同步代码块就会释放对象的锁
2、 在执行同步代码块的过程中,遇到异常而导致线程终止,锁也会被释放
3、 在执行同步代码块的过程中,执行了锁所属对象的wait()方法,这个线程会释放对象锁,进入对象的等待池。

死锁
当一个线程等待由另一个线程持有的锁,而后者正在等待已被第一个线程持有的锁时,就会发生死锁。JVM不监测也不试图避免这种情况,因此保证不发生死锁就成了程序员的责任。

如何避免死锁
一个通用的经验法则是:当几个线程都要访问共享资源A、B、C 时,保证每个线程都按照同样的顺序去访问他们。

线程通信
Java.lang.Object类中提供了两个用于线程通信的方法
1、 wait():执行了该方法的线程释放对象的锁,JVM会把该线程放到对象的等待池中。该线程等待其它线程唤醒
2、 notify():执行该方法的线程唤醒在对象的等待池中等待的一个线程,JVM从对象的等待池中随机选择一个线程,把它转到对象的锁池中。
posted on 2009-06-01 09:31 Frank_Fang 阅读(209) 评论(4)  编辑  收藏 所属分类: Java编程


评论:
# re: Java多线程小结 2009-06-02 14:33 | Frank_Fang

wait和notify方法的使用一定要在同步代码块中
  回复  更多评论
 
# re: Java多线程小结 2009-06-02 21:51 | Frank_Fang

线程同步
作者 : buaawhl

我们可以在计算机上运行各种计算机软件程序。每一个运行的程序可能包括多个独立运行的线程(Thread)。
线程(Thread)是一份独立运行的程序,有自己专用的运行栈。线程有可能和其他线程共享一些资源,比如,内存,文件,数据库等。
当多个线程同时读写同一份共享资源的时候,可能会引起冲突。这时候,我们需要引入线程“同步”机制,即各位线程之间要有个先来后到,不能一窝蜂挤上去抢作一团。
同步这个词是从英文synchronize(使同时发生)翻译过来的。我也不明白为什么要用这个很容易引起误解的词。既然大家都这么用,咱们也就只好这么将就。
线程同步的真实意思和字面意思恰好相反。线程同步的真实意思,其实是“排队”:几个线程之间要排队,一个一个对共享资源进行操作,而不是同时进行操作。

因此,关于线程同步,需要牢牢记住的第一点是:线程同步就是线程排队。同步就是排队。线程同步的目的就是避免线程“同步”执行。这可真是个无聊的绕口令。
关于线程同步,需要牢牢记住的第二点是 “共享”这两个字。只有共享资源的读写访问才需要同步。如果不是共享资源,那么就根本没有同步的必要。
关于线程同步,需要牢牢记住的第三点是,只有“变量”才需要同步访问。如果共享的资源是固定不变的,那么就相当于“常量”,线程同时读取常量也不需要同步。至少一个线程修改共享资源,这样的情况下,线程之间就需要同步。
关于线程同步,需要牢牢记住的第四点是:多个线程访问共享资源的代码有可能是同一份代码,也有可能是不同的代码;无论是否执行同一份代码,只要这些线程的代码访问同一份可变的共享资源,这些线程之间就需要同步。

为了加深理解,下面举几个例子。
有两个采购员,他们的工作内容是相同的,都是遵循如下的步骤:
(1)到市场上去,寻找并购买有潜力的样品。
(2)回到公司,写报告。
这两个人的工作内容虽然一样,他们都需要购买样品,他们可能买到同样种类的样品,但是他们绝对不会购买到同一件样品,他们之间没有任何共享资源。所以,他们可以各自进行自己的工作,互不干扰。
这两个采购员就相当于两个线程;两个采购员遵循相同的工作步骤,相当于这两个线程执行同一段代码。

下面给这两个采购员增加一个工作步骤。采购员需要根据公司的“布告栏”上面公布的信息,安排自己的工作计划。
这两个采购员有可能同时走到布告栏的前面,同时观看布告栏上的信息。这一点问题都没有。因为布告栏是只读的,这两个采购员谁都不会去修改布告栏上写的信息。

下面增加一个角色。一个办公室行政人员这个时候,也走到了布告栏前面,准备修改布告栏上的信息。
如果行政人员先到达布告栏,并且正在修改布告栏的内容。两个采购员这个时候,恰好也到了。这两个采购员就必须等待行政人员完成修改之后,才能观看修改后的信息。
如果行政人员到达的时候,两个采购员已经在观看布告栏了。那么行政人员需要等待两个采购员把当前信息记录下来之后,才能够写上新的信息。
上述这两种情况,行政人员和采购员对布告栏的访问就需要进行同步。因为其中一个线程(行政人员)修改了共享资源(布告栏)。而且我们可以看到,行政人员的工作流程和采购员的工作流程(执行代码)完全不同,但是由于他们访问了同一份可变共享资源(布告栏),所以他们之间需要同步。

同步锁

前面讲了为什么要线程同步,下面我们就来看如何才能线程同步。
线程同步的基本实现思路还是比较容易理解的。我们可以给共享资源加一把锁,这把锁只有一把钥匙。哪个线程获取了这把钥匙,才有权利访问该共享资源。
生活中,我们也可能会遇到这样的例子。一些超市的外面提供了一些自动储物箱。每个储物箱都有一把锁,一把钥匙。人们可以使用那些带有钥匙的储物箱,把东西放到储物箱里面,把储物箱锁上,然后把钥匙拿走。这样,该储物箱就被锁住了,其他人不能再访问这个储物箱。(当然,真实的储物箱钥匙是可以被人拿走复制的,所以不要把贵重物品放在超市的储物箱里面。于是很多超市都采用了电子密码锁。)
线程同步锁这个模型看起来很直观。但是,还有一个严峻的问题没有解决,这个同步锁应该加在哪里?
当然是加在共享资源上了。反应快的读者一定会抢先回答。
没错,如果可能,我们当然尽量把同步锁加在共享资源上。一些比较完善的共享资源,比如,文件系统,数据库系统等,自身都提供了比较完善的同步锁机制。我们不用另外给这些资源加锁,这些资源自己就有锁。
但是,大部分情况下,我们在代码中访问的共享资源都是比较简单的共享对象。这些对象里面没有地方让我们加锁。
读者可能会提出建议:为什么不在每一个对象内部都增加一个新的区域,专门用来加锁呢?这种设计理论上当然也是可行的。问题在于,线程同步的情况并不是很普遍。如果因为这小概率事件,在所有对象内部都开辟一块锁空间,将会带来极大的空间浪费。得不偿失。
于是,现代的编程语言的设计思路都是把同步锁加在代码段上。确切的说,是把同步锁加在“访问共享资源的代码段”上。这一点一定要记住,同步锁是加在代码段上的。
同步锁加在代码段上,就很好地解决了上述的空间浪费问题。但是却增加了模型的复杂度,也增加了我们的理解难度。
现在我们就来仔细分析“同步锁加在代码段上”的线程同步模型。
首先,我们已经解决了同步锁加在哪里的问题。我们已经确定,同步锁不是加在共享资源上,而是加在访问共享资源的代码段上。
其次,我们要解决的问题是,我们应该在代码段上加什么样的锁。这个问题是重点中的重点。这是我们尤其要注意的问题:访问同一份共享资源的不同代码段,应该加上同一个同步锁;如果加的是不同的同步锁,那么根本就起不到同步的作用,没有任何意义。
这就是说,同步锁本身也一定是多个线程之间的共享对象。

Java语言的synchronized关键字

为了加深理解,举几个代码段同步的例子。
不同语言的同步锁模型都是一样的。只是表达方式有些不同。这里我们以当前最流行的Java语言为例。Java语言里面用synchronized关键字给代码段加锁。整个语法形式表现为
synchronized(同步锁) {
// 访问共享资源,需要同步的代码段
}

这里尤其要注意的就是,同步锁本身一定要是共享的对象。

… f1() {

Object lock1 = new Object(); // 产生一个同步锁

synchronized(lock1){
// 代码段 A
// 访问共享资源 resource1
// 需要同步
}
}

上面这段代码没有任何意义。因为那个同步锁是在函数体内部产生的。每个线程调用这段代码的时候,都会产生一个新的同步锁。那么多个线程之间,使用的是不同的同步锁。根本达不到同步的目的。
同步代码一定要写成如下的形式,才有意义。

public static final Object lock1 = new Object();

… f1() {

synchronized(lock1){ // lock1 是公用同步锁
// 代码段 A
// 访问共享资源 resource1
// 需要同步
}

你不一定要把同步锁声明为static或者public,但是你一定要保证相关的同步代码之间,一定要使用同一个同步锁。
讲到这里,你一定会好奇,这个同步锁到底是个什么东西。为什么随便声明一个Object对象,就可以作为同步锁?
在Java里面,同步锁的概念就是这样的。任何一个Object Reference都可以作为同步锁。我们可以把Object Reference理解为对象在内存分配系统中的内存地址。因此,要保证同步代码段之间使用的是同一个同步锁,我们就要保证这些同步代码段的synchronized关键字使用的是同一个Object Reference,同一个内存地址。这也是为什么我在前面的代码中声明lock1的时候,使用了final关键字,这就是为了保证lock1的Object Reference在整个系统运行过程中都保持不变。
一些求知欲强的读者可能想要继续深入了解synchronzied(同步锁)的实际运行机制。Java虚拟机规范中(你可以在google用“JVM Spec”等关键字进行搜索),有对synchronized关键字的详细解释。synchronized会编译成 monitor enter, … monitor exit之类的指令对。Monitor就是实际上的同步锁。每一个Object Reference在概念上都对应一个monitor。
这些实现细节问题,并不是理解同步锁模型的关键。我们继续看几个例子,加深对同步锁模型的理解。

public static final Object lock1 = new Object();

… f1() {

synchronized(lock1){ // lock1 是公用同步锁
// 代码段 A
// 访问共享资源 resource1
// 需要同步
}
}

… f2() {

synchronized(lock1){ // lock1 是公用同步锁
// 代码段 B
// 访问共享资源 resource1
// 需要同步
}
}

上述的代码中,代码段A和代码段B就是同步的。因为它们使用的是同一个同步锁lock1。
如果有10个线程同时执行代码段A,同时还有20个线程同时执行代码段B,那么这30个线程之间都是要进行同步的。
这30个线程都要竞争一个同步锁lock1。同一时刻,只有一个线程能够获得lock1的所有权,只有一个线程可以执行代码段A或者代码段B。其他竞争失败的线程只能暂停运行,进入到该同步锁的就绪(Ready)队列。
每一个同步锁下面都挂了几个线程队列,包括就绪(Ready)队列,待召(Waiting)队列等。比如,lock1对应的就绪队列就可以叫做lock1 - ready queue。每个队列里面都可能有多个暂停运行的线程。
注意,竞争同步锁失败的线程进入的是该同步锁的就绪(Ready)队列,而不是后面要讲述的待召队列(Waiting Queue,也可以翻译为等待队列)。就绪队列里面的线程总是时刻准备着竞争同步锁,时刻准备着运行。而待召队列里面的线程则只能一直等待,直到等到某个信号的通知之后,才能够转移到就绪队列中,准备运行。
成功获取同步锁的线程,执行完同步代码段之后,会释放同步锁。该同步锁的就绪队列中的其他线程就继续下一轮同步锁的竞争。成功者就可以继续运行,失败者还是要乖乖地待在就绪队列中。
因此,线程同步是非常耗费资源的一种操作。我们要尽量控制线程同步的代码段范围。同步的代码段范围越小越好。我们用一个名词“同步粒度”来表示同步代码段的范围。
同步粒度
在Java语言里面,我们可以直接把synchronized关键字直接加在函数的定义上。
比如。
… synchronized … f1() {
// f1 代码段
}

这段代码就等价于
… f1() {
synchronized(this){ // 同步锁就是对象本身
// f1 代码段
}
}

同样的原则适用于静态(static)函数
比如。
… static synchronized … f1() {
// f1 代码段
}

这段代码就等价于
…static … f1() {
synchronized(Class.forName(…)){ // 同步锁是类定义本身
// f1 代码段
}
}

但是,我们要尽量避免这种直接把synchronized加在函数定义上的偷懒做法。因为我们要控制同步粒度。同步的代码段越小越好。synchronized控制的范围越小越好。
我们不仅要在缩小同步代码段的长度上下功夫,我们同时还要注意细分同步锁。
比如,下面的代码

public static final Object lock1 = new Object();

… f1() {

synchronized(lock1){ // lock1 是公用同步锁
// 代码段 A
// 访问共享资源 resource1
// 需要同步
}
}

… f2() {

synchronized(lock1){ // lock1 是公用同步锁
// 代码段 B
// 访问共享资源 resource1
// 需要同步
}
}

… f3() {

synchronized(lock1){ // lock1 是公用同步锁
// 代码段 C
// 访问共享资源 resource2
// 需要同步
}
}

… f4() {

synchronized(lock1){ // lock1 是公用同步锁
// 代码段 D
// 访问共享资源 resource2
// 需要同步
}
}

上述的4段同步代码,使用同一个同步锁lock1。所有调用4段代码中任何一段代码的线程,都需要竞争同一个同步锁lock1。
我们仔细分析一下,发现这是没有必要的。
因为f1()的代码段A和f2()的代码段B访问的共享资源是resource1,f3()的代码段C和f4()的代码段D访问的共享资源是resource2,它们没有必要都竞争同一个同步锁lock1。我们可以增加一个同步锁lock2。f3()和f4()的代码可以修改为:
public static final Object lock2 = new Object();

… f3() {

synchronized(lock2){ // lock2 是公用同步锁
// 代码段 C
// 访问共享资源 resource2
// 需要同步
}
}

… f4() {

synchronized(lock2){ // lock2 是公用同步锁
// 代码段 D
// 访问共享资源 resource2
// 需要同步
}
}

这样,f1()和f2()就会竞争lock1,而f3()和f4()就会竞争lock2。这样,分开来分别竞争两个锁,就可以大大较少同步锁竞争的概率,从而减少系统的开销。


  回复  更多评论
 
# re: Java多线程小结 2009-06-02 21:51 | Frank_Fang

信号量

同步锁模型只是最简单的同步模型。同一时刻,只有一个线程能够运行同步代码。
有的时候,我们希望处理更加复杂的同步模型,比如生产者/消费者模型、读写同步模型等。这种情况下,同步锁模型就不够用了。我们需要一个新的模型。这就是我们要讲述的信号量模型。
信号量模型的工作方式如下:线程在运行的过程中,可以主动停下来,等待某个信号量的通知;这时候,该线程就进入到该信号量的待召(Waiting)队列当中;等到通知之后,再继续运行。
很多语言里面,同步锁都由专门的对象表示,对象名通常叫Monitor。
同样,在很多语言中,信号量通常也有专门的对象名来表示,比如,Mutex,Semphore。
信号量模型要比同步锁模型复杂许多。一些系统中,信号量甚至可以跨进程进行同步。另外一些信号量甚至还有计数功能,能够控制同时运行的线程数。
我们没有必要考虑那么复杂的模型。所有那些复杂的模型,都是最基本的模型衍生出来的。只要掌握了最基本的信号量模型——“等待/通知”模型,复杂模型也就迎刃而解了。
我们还是以Java语言为例。Java语言里面的同步锁和信号量概念都非常模糊,没有专门的对象名词来表示同步锁和信号量,只有两个同步锁相关的关键字——volatile和synchronized。
这种模糊虽然导致概念不清,但同时也避免了Monitor、Mutex、Semphore等名词带来的种种误解。我们不必执着于名词之争,可以专注于理解实际的运行原理。
在Java语言里面,任何一个Object Reference都可以作为同步锁。同样的道理,任何一个Object Reference也可以作为信号量。
Object对象的wait()方法就是等待通知,Object对象的notify()方法就是发出通知。
具体调用方法为
(1)等待某个信号量的通知
public static final Object signal = new Object();

… f1() {
synchronized(singal) { // 首先我们要获取这个信号量。这个信号量同时也是一个同步锁

// 只有成功获取了signal这个信号量兼同步锁之后,我们才可能进入这段代码
signal.wait(); // 这里要放弃信号量。本线程要进入signal信号量的待召(Waiting)队列

// 可怜。辛辛苦苦争取到手的信号量,就这么被放弃了

// 等到通知之后,从待召(Waiting)队列转到就绪(Ready)队列里面
// 转到了就绪队列中,离CPU核心近了一步,就有机会继续执行下面的代码了。
// 仍然需要把signal同步锁竞争到手,才能够真正继续执行下面的代码。命苦啊。

}
}

需要注意的是,上述代码中的signal.wait()的意思。signal.wait()很容易导致误解。signal.wait()的意思并不是说,signal开始wait,而是说,运行这段代码的当前线程开始wait这个signal对象,即进入signal对象的待召(Waiting)队列。

(2)发出某个信号量的通知
… f2() {
synchronized(singal) { // 首先,我们同样要获取这个信号量。同时也是一个同步锁。

// 只有成功获取了signal这个信号量兼同步锁之后,我们才可能进入这段代码
signal.notify(); // 这里,我们通知signal的待召队列中的某个线程。

// 如果某个线程等到了这个通知,那个线程就会转到就绪队列中
// 但是本线程仍然继续拥有signal这个同步锁,本线程仍然继续执行
// 嘿嘿,虽然本线程好心通知其他线程,
// 但是,本线程可没有那么高风亮节,放弃到手的同步锁
// 本线程继续执行下面的代码
一般的情况是signal.notify()是此段代码的最后一条语句

}
}

需要注意的是,signal.notify()的意思。signal.notify()并不是通知signal这个对象本身。而是通知正在等待signal信号量的其他线程。

以上就是Object的wait()和notify()的基本用法。
实际上,wait()还可以定义等待时间,当线程在某信号量的待召队列中,等到足够长的时间,就会等无可等,无需再等,自己就从待召队列转移到就绪队列中了。
另外,还有一个notifyAll()方法,表示通知待召队列里面的所有线程。
这些细节问题,并不对大局产生影响。
  回复  更多评论
 
# re: Java多线程小结 2009-06-02 21:52 | Frank_Fang

绿色线程

绿色线程(Green Thread)是一个相对于操作系统线程(Native Thread)的概念。
操作系统线程(Native Thread)的意思就是,程序里面的线程会真正映射到操作系统的线程(内核级线程),线程的运行和调度都是由操作系统控制的
绿色线程(Green Thread)的意思是,程序里面的线程不会真正映射到操作系统的线程,而是由语言运行平台自身来调度。
当前版本的Python语言的线程就可以映射到操作系统线程。当前版本的Ruby语言的线程就属于绿色线程,无法映射到操作系统的线程,因此Ruby语言的线程的运行速度比较慢。
难道说,绿色线程要比操作系统线程要慢吗?当然不是这样。事实上,情况可能正好相反。Ruby是一个特殊的例子。线程调度器并不是很成熟。
目前,线程的流行实现模型就是绿色线程。比如,stackless Python,就引入了更加轻量的绿色线程概念。在线程并发编程方面,无论是运行速度还是并发负载上,都优于Python。
另一个更著名的例子就是ErLang(爱立信公司开发的一种开源语言)。
ErLang的绿色线程概念非常彻底。ErLang的线程不叫Thread,而是叫做Process。这很容易和进程混淆起来。这里要注意区分一下。
ErLang Process之间根本就不需要同步。因为ErLang语言的所有变量都是final的,不允许变量的值发生任何变化。因此根本就不需要同步。
final变量的另一个好处就是,对象之间不可能出现交叉引用,不可能构成一种环状的关联,对象之间的关联都是单向的,树状的。因此,内存垃圾回收的算法效率也非常高。这就让ErLang能够达到Soft Real Time(软实时)的效果。这对于一门支持内存垃圾回收的语言来说,可不是一件容易的事情。   回复  更多评论
分享到:
评论

相关推荐

    JAVA多线程操作方法实用大全

    欧柏泰克教学小结:JAVA多线程操作方法实用大全

    java线程详解

    八、线程同步小结 Java线程:线程的交互 Java线程:线程的调度-休眠 Java线程:volatile关键字 Java线程:新特征-线程池 一、固定大小的线程池 二、单任务线程池 三、可变尺寸的线程池 四、延迟连接池 五、...

    分享40个Java多线程问题小结

    多个线程共存于同一JVM进程里面,所以共用相同的内存空间,较之多进程,多线程之间的通信更轻量级,本文给大家分享40个Java多线程问题小结 的相关资料,需要的朋友可以参考下

    JAVA实现线程的方法

    欧柏泰克课堂小结:JAVA实现线程的方法

    Java程序设计案例教程-第8章-多线程编程.pptx

    第4页 主要内容 8.1 Java线程模型 8.2 创建线程 8.3 同步与线程间通信 8.4 获取线程状态 8.5 本章小结 8.6 思考和练习 Java程序设计案例教程-第8章-多线程编程全文共36页,当前为第4页。 8.1 Java线程模型 Java对多...

    Java线程安全问题小结_动力节点Java学院整理

    主要介绍了Java线程安全问题小结的相关资料,需要的朋友可以参考下

    JAVA清华大学教程

    ◇6.2 多线程的互斥与同步 ◇6.3 Java Applet ◇本讲小结 ◇课后习题 ★ 第七讲 Swing用户界面设计 ◇课前索引 ◇7.1 Swing简介 ◇7.2 Swing组件和容器 ◇本讲小结 ◇课后习题 ★ 第八讲 Java网络编程 ◇...

    实验5 JAVA常用类.doc

    本专栏主要为Java程序设计(基础)实验报告和Java程序设计(进阶)...进阶篇有反射、泛型、注解、网络编程、多线程、序列化、数据库、Servlet、JSP、XML解析、单例模式与枚举。本专栏主要为Java入门者提供实验参考。

    突破JAVA万人面试,懂多线程者得天下.zip

    目录网盘文件永久链接 01课程安排av 02什么是并发和并行av ...08线程创建小结av 09线程生命周期avi 10.线程安全问题什么是线程安全avi 11线程安全同题问题分析avi 12线程安全问题线程安全问题演示avi ...............

    JAVA 清华大学 教程

    ◇6.2 多线程的互斥与同步 ◇6.3 Java Applet ◇本讲小结 ◇课后习题 ★ 第七讲 Swing用户界面设计 ◇课前索引 ◇7.1 Swing简介 ◇7.2 Swing组件和容器 ◇本讲小结 ◇课后习题 ★ 第八讲 Java网络编程 ◇...

    清华大学JAVA教程

    ◇6.2 多线程的互斥与同步 ◇6.3 Java Applet ◇本讲小结 ◇课后习题 ★ 第七讲 Swing用户界面设计 ◇课前索引 ◇7.1 Swing简介 ◇7.2 Swing组件和容器 ◇本讲小结 ◇课后习题 ★ 第八讲 Java网络编程 ◇...

    Java编程语言详细教程

    ◇6.2 多线程的互斥与同步 ◇6.3 Java Applet ◇本讲小结 ◇课后习题 ★ 第七讲 Swing用户界面设计 ◇课前索引 ◇7.1 Swing简介 ◇7.2 Swing组件和容器 ◇本讲小结 ◇课后习题 ★ 第八讲 Java网络编程 ◇...

    (超赞)JAVA精华之--深入JAVA API

    1.7 Java 5.0多线程编程 1.8 Java Socket编程 1.9 Java的内存泄漏 1.10 抽象类与接口的区别 1.11 Java变量类型间的相互转换 2 JAVA与WEB 2.1 JMX规范 2.1.1 JMX概述 2.1.2 设备层(Instrumentation Level) 2.1.3 ...

    Java基础知识点总结.docx

    Java数组与集合小结 305 递归 309 对象的序列化 310 Java两种线程类:Thread和Runnable 315 Java锁小结 321 java.util.concurrent.locks包下常用的类 326 NIO(New IO) 327 volatile详解 337 Java 8新特性 347 Java...

    Java优化编程(第2版)

    第12章 java多线程技术与应用性能优化 12.1 java多线程技术 12.1.1 进程与线程 12.1.2 线程的生命周期 12.2 并行任务与性能 12.2.1 并行任务与多线程 12.2.2 并行任务与死锁 12.3 线程池技术与应用性能优化 12.3.1 ...

    Java语言程序设计实验指导书

    Java语言程序设计实验指导书 前 言  Java语言是计算机专业的一门重要的专业,是在实际开发中的一个非常重要开发工具。Java语言由于其平台无关性和自己就是一个网络编程语言,使得它在...实验6:Java中的多线程 12

    Java测试新技术TestNG和高级概念.part1

    2.5 测试多线程代码 2.6 性能测试 2.7 模拟和桩 2.8 依赖的测试 2.9 继承和annotation范围 2.10 测试分组 2.11 代码覆盖率 2.12 本章小结 第3章 企业级测试 3.1 典型企业级场景 3.2 一个具体例子 3.3 测试实现 ...

    JAVA入门1.2.3:一个老鸟的JAVA学习心得 PART1(共3个)

    7.11 小结:多方位理解Java方法 191 7.12 习题 192 第8章 Java中的包(Package)命名习惯和注释 193 教学视频:43分钟 8.1 Java中的包(Package) 193 8.1.1 Java中的包 193 8.1.2 在Eclipse中使用包 194 ...

Global site tag (gtag.js) - Google Analytics