概述
Java 语言从诞生的那天起,就非常注重网络编程方面的应用。随着互联网应用的飞速发展,Java 的基础类库也不断地对网络相关的 API 进行加强和扩展。在 Java SE 6 当中,围绕着 HTTP 协议出现了很多实用的新特性:NTLM 认证提供了一种 Window 平台下较为安全的认证机制;JDK 当中提供了一个轻量级的 HTTP 服务器;提供了较为完善的 HTTP Cookie 管理功能;更为实用的 NetworkInterface;DNS 域名的国际化支持等等。
NTLM 认证
不可避免,网络中有很多资源是被安全域保护起来的。访问这些资源需要对用户的身份进行认证。下面是一个简单的例子:
import java.net.*;
import java.io.*;
public class Test {
public static void main(String[] args) throws Exception {
URL url = new URL("http://PROTECTED.com");
URLConnection connection = url.openConnection();
InputStream in = connection.getInputStream();
byte[] data = new byte[1024];
while(in.read(data)>0)
{
//do something for data
}
in.close();
}
}
当 Java 程序试图从一个要求认证的网站读取信息的时候,也就是说,从联系于 http://Protected.com 这个 URLConnection 的 InputStream 中 read 数据时,会引发 FileNotFoundException。尽管笔者认为,这个 Exception 的类型与实际错误发生的原因实在是相去甚远;但这个错误确实是由网络认证失败所导致的。
要解决这个问题,有两种方法:
其一,是给 URLConnection 设定一个“Authentication”属性:
String credit = USERNAME + ":" + PASSWORD;
String encoding = new sun.misc.BASE64Encoder().encode (credit.getBytes());
connection.setRequestProperty ("Authorization", "Basic " + encoding);
这里假设 http://PROTECTED.COM 使用了基本(Basic)认证类型。
从上面的例子,我们可以看出,设定 Authentication 属性还是比较复杂的:用户必须了解认证方式的细节,才能将用户名/密码以一定的规范给出,然后用特定的编码方式加以编码。Java 类库有没有提供一个封装了认证细节,只需要给出用户名/密码的工具呢?
这就是我们要介绍的另一种方法,使用 java.net.Authentication 类。
每当遇到网站需要认证的时候,HttpURLConnection 都会向 Authentication 类询问用户名和密码。
Authentication 类不会知道究竟用户应该使用哪个 username/password 那么用户如何向 Authentication 类提供自己的用户名和密码呢?
提供一个继承于 Authentication 的类,实现 getPasswordAuthentication 方法,在 PasswordAuthentication 中给出用户名和密码:
class DefaultAuthenticator extends Authenticator {
public PasswordAuthentication getPasswordAuthentication () {
return new PasswordAuthentication ("USER", "PASSWORD".toCharArray());
}
}
然后,将它设为默认的(全局)Authentication:
Authenticator.setDefault (new DefaultAuthenticator());
那么,不同的网站需要不同的用户名/密码又怎么办呢?
Authentication 提供了关于认证发起者的足够多的信息,让继承类根据这些信息进行判断,在 getPasswordAuthentication 方法中给出了不同的认证信息:
getRequestingHost()
getRequestingPort()
getRequestingPrompt()
getRequestingProtocol()
getRequestingScheme()
getRequestingURL()
getRequestingSite()
getRequestorType()
另一件关于 Authentication 的重要问题是认证类型。不同的认证类型需要 Authentication 执行不同的协议。至 Java SE 6.0 为止,Authentication 支持的认证方式有:
HTTP Basic authentication
HTTP Digest authentication
NTLM
Http SPNEGO Negotiate
Kerberos
NTLM
这里我们着重介绍 NTLM。
NTLM 是 NT LAN Manager 的缩写。早期的 SMB 协议在网络上明文传输口令,这是很不安全的。微软随后提出了 WindowsNT 挑战/响应验证机制,即 NTLM。
NTLM 协议是这样的:
·客户端首先将用户的密码加密成为密码散列;
·客户端向服务器发送自己的用户名,这个用户名是用明文直接传输的;
·服务器产生一个 16 位的随机数字发送给客户端,作为一个 challenge(挑战) ;
·客户端用步骤1得到的密码散列来加密这个 challenge ,然后把这个返回给服务器;
·服务器把用户名、给客户端的 challenge 、客户端返回的 response 这三个东西,发送域控制器 ;
·域控制器用这个用户名在 SAM 密码管理库中找到这个用户的密码散列,然后使用这个密码散列来加密 challenge;
·域控制器比较两次加密的 challenge ,如果一样,那么认证成功;
Java 6 以前的版本,是不支持 NTLM 认证的。用户若想使用 HttpConnection 连接到一个使用有 Windows 域保护的网站时,是无法通过 NTLM 认证的。另一种方法,是用户自己用 Socket 这样的底层单元实现整个协议过程,这无疑是十分复杂的。
终于,Java 6 的 Authentication 类提供了对 NTLM 的支持。使用十分方便,就像其他的认证协议一样:
class DefaultAuthenticator extends Authenticator {
private static String username = "username ";
private static String domain = "domain ";
private static String password = "password ";
public PasswordAuthentication getPasswordAuthentication() {
String usernamewithdomain = domain + "/ "+username;
return (new PasswordAuthentication(usernamewithdomain, password.toCharArray()));
}
}
这里,根据 Windows 域账户的命名规范,账户名为域名+”/”+域用户名。如果不想每生成 PasswordAuthentication 时,每次添加域名,可以设定一个系统变量名“http.auth.ntlm.domain“。
Java 6 中 Authentication 的另一个特性是认证协商。目前的服务器一般同时提供几种认证协议,根据客户端的不同能力,协商出一种认证方式。比如,IIS 服务器会同时提供 NTLM with kerberos 和 NTLM 两种认证方式,当客户端不支持 NTLM with kerberos 时,执行 NTLM 认证。
目前,Authentication 的默认协商次序是:
GSS/SPNEGO -> Digest -> NTLM -> Basic
那么 kerberos 的位置究竟在哪里呢?
事实上,GSS/SPNEGO 以 JAAS 为基石,而后者实际上就是使用 kerberos 的。
轻量级 HTTP 服务器
Java 6 还提供了一个轻量级的纯 Java Http 服务器的实现。下面是一个简单的例子:
public static void main(String[] args) throws Exception{
HttpServerProvider httpServerProvider = HttpServerProvider.provider();
InetSocketAddress addr = new InetSocketAddress(7778);
HttpServer httpServer = httpServerProvider.createHttpServer(addr, 1);
httpServer.createContext("/myapp/", new MyHttpHandler());
httpServer.setExecutor(null);
httpServer.start();
System.out.println("started");
}
static class MyHttpHandler implements HttpHandler{
public void handle(HttpExchange httpExchange) throws IOException {
String response = "Hello world!";
httpExchange.sendResponseHeaders(200, response.length());
OutputStream out = httpExchange.getResponseBody();
out.write(response.getBytes());
out.close();
}
}
然后,在浏览器中访问 http://localhost:7778/myapp/,我们得到:
图一 浏览器显示
首先,HttpServer 是从 HttpProvider 处得到的,这里我们使用了 JDK 6 提供的实现。用户也可以自行实现一个 HttpProvider 和相应的 HttpServer 实现。
其次,HttpServer 是有上下文(context)的概念的。比如,http://localhost:7778/myapp/ 中“/myapp/”就是相对于 HttpServer Root 的上下文。对于每个上下文,都有一个 HttpHandler 来接收 http 请求并给出回答。
最后,在 HttpHandler 给出具体回答之前,一般先要返回一个 Http head。这里使用 HttpExchange.sendResponseHeaders(int code, int length)。其中 code 是 Http 响应的返回值,比如那个著名的 404。length 指的是 response 的长度,以字节为单位。
Cookie 管理特性
Cookie 是 Web 应用当中非常常用的一种技术, 用于储存某些特定的用户信息。虽然,我们不能把一些特别敏感的信息存放在 Cookie 里面,但是,Cookie 依然可以帮助我们储存一些琐碎的信息,帮助 Web 用户在访问网页时获得更好的体验,例如个人的搜索参数,颜色偏好以及上次的访问时间等等。网络程序开发者可以利用 Cookie 来创建有状态的网络会话(Stateful Session)。 Cookie 的应用越来越普遍。在 Windows 里面,我们可以在“Documents And Settings”文件夹里面找到IE使用的 Cookie,假设用户名为 admin,那么在 admin 文件夹的 Cookies 文件夹里面,我们可以看到名为“admin@(domain)”的一些文件,其中的 domain 就是表示创建这些 Cookie 文件的网络域, 文件里面就储存着用户的一些信息。
JavaScript 等脚本语言对 Cookie 有着很不错的支持。 .NET 里面也有相关的类来支持开发者对 Cookie 的管理。 不过,在 Java SE 6 之前, Java一直都没有提供 Cookie 管理的功能。在 Java SE 5 里面, java.net 包里面有一个 CookieHandler 抽象类,不过并没有提供其他具体的实现。到了 Java SE 6, Cookie 相关的管理类在 Java 类库里面才得到了实现。有了这些 Cookie 相关支持的类,Java 开发者可以在服务器端编程中很好的操作 Cookie, 更好的支持 HTTP 相关应用,创建有状态的 HTTP 会话。
·用 HttpCookie 代表 Cookie
java.net.HttpCookie 类是 Java SE 6 新增的一个表示 HTTP Cookie 的新类, 其对象可以表示 Cookie 的内容, 可以支持所有三种 Cookie 规范:
Netscape 草案
RFC 2109 - http://www.ietf.org/rfc/rfc2109.txt
RFC 2965 - http://www.ietf.org/rfc/rfc2965.txt
这个类储存了 Cookie 的名称,路径,值,协议版本号,是否过期,网络域,最大生命期等等信息。
·用 CookiePolicy 规定 Cookie 接受策略
java.net.CookiePolicy 接口可以规定 Cookie 的接受策略。 其中唯一的方法用来判断某一特定的 Cookie 是否能被某一特定的地址所接受。 这个类内置了 3 个实现的子类。一个类接受所有的 Cookie,另一个则拒绝所有,还有一个类则接受所有来自原地址的 Cookie。
·用CookieStore 储存 Cookie
java.net.CookieStore 接口负责储存和取出 Cookie。 当有 HTTP 请求的时候,它便储存那些被接受的 Cookie; 当有 HTTP 回应的时候,它便取出相应的 Cookie。 另外,当一个 Cookie 过期的时候,它还负责自动删去这个 Cookie。
·用 CookieManger/CookieHandler 管理 Cookie
java.net.CookieManager 是整个 Cookie 管理机制的核心,它是 CookieHandler 的默认实现子类。下图显示了整个 HTTP Cookie 管理机制的结构:
图 2. Cookie 管理类的关系
一个 CookieManager 里面有一个 CookieStore 和一个 CookiePolicy,分别负责储存 Cookie 和规定策略。用户可以指定两者,也可以使用系统默认的 CookieManger。
例子
下面这个简单的例子说明了 Cookie 相关的管理功能:
// 创建一个默认的 CookieManager
CookieManager manager = new CookieManager();
// 将规则改掉,接受所有的 Cookie
manager.setCookiePolicy(CookiePolicy.ACCEPT_ALL);
// 保存这个定制的 CookieManager
CookieHandler.setDefault(manager);
// 接受 HTTP 请求的时候,得到和保存新的 Cookie
HttpCookie cookie = new HttpCookie("...(name)...","...(value)...");
manager.getCookieStore().add(uri, cookie);
// 使用 Cookie 的时候:
// 取出 CookieStore
CookieStore store = manager.getCookieStore();
// 得到所有的 URI
List<URI> uris = store.getURIs();
for (URI uri : uris) {
// 筛选需要的 URI
// 得到属于这个 URI 的所有 Cookie
List<HttpCookie> cookies = store.get(uri);
for (HttpCookie cookie : cookies) {
// 取出了 Cookie
}
}
// 或者,取出这个 CookieStore 里面的全部 Cookie
// 过期的 Cookie 将会被自动删除
List<HttpCookie> cookies = store.getCookies();
for (HttpCookie cookie : cookies) {
// 取出了 Cookie
}
其他新特性
·NetworkInterface 的增强
从 Java SE 1.4 开始,JDK 当中出现了一个网络工具类 java.net.NetworkInterface,提供了一些网络的实用功能。 在 Java SE 6 当中,这个工具类得到了很大的加强,新增了很多实用的方法。例如:
public boolean isUp()
用来判断网络接口是否启动并运行
public boolean isLoopback()
用来判断网络接口是否是环回接口(loopback)
public boolean isPointToPoint()
用来判断网络接口是否是点对点(P2P)网络
public boolean supportsMulticast()
用来判断网络接口是否支持多播
public byte[] getHardwareAddress()
用来得到硬件地址(MAC)
public int getMTU()
用来得到最大传输单位(MTU,Maximum Transmission Unit)
public boolean isVirtual()
用来判断网络接口是否是虚饨涌?
关于此工具类的具体信息,请参考 Java SE 6 相应文档(见 参考资源)。
·域名的国际化
在最近的一些 RFC 文档当中,规定 DNS 服务器可以解析除开 ASCII 以外的编码字符。有一个算法可以在这种情况下做 Unicode 与 ASCII 码之间的转换,实现域名的国际化。java.net.IDN 就是实现这个国际化域名转换的新类,IDN 是“国际化域名”的缩写(internationalized domain names)。这个类很简单,主要包括 4 个静态函数,做字符的转换。
结束语
Java SE 6 有着很多 HTTP 相关的新特性,使得 Java SE 平台本身对网络编程,尤其是基于 HTTP 协议的因特网编程,有了更加强大的支持。
分享到:
- 2007-12-27 10:16
- 浏览 2766
- 评论(0)
- 论坛回复 / 浏览 (0 / 2332)
- 查看更多
相关推荐
【标题】: "2008十大优秀Java应用程序(转载)" 这些优秀的Java应用程序展示了Java在不同领域的广泛应用和强大性能。以下是对各个程序的详细解释: 10. **无线传感器开发环境Sun SPOT** - Sun SPOT是一个创新的...
者将面向对象的思想巧妙的融合在 Java 的具体技术上,潜移默化的让你感觉到了一种新的语言和新的思想方式的诞生。 但是读完这本书,你对书中这些蕴含的思想也许需要一种更明晰更系统更透彻的了解和掌握,那么你就...
文档支持目录章节跳转同时还支持阅读器左侧大纲显示和章节快速定位,文档内容完整、条理清晰。文档内所有文字、图表、函数、目录等元素均显示正常,无任何异常情况,敬请您放心查阅与使用。文档仅供学习参考,请勿用作商业用途。 编译闪电般迅速,并发性能卓越,部署轻松简单!Go 语言以极简设计理念和出色工程性能,成为云原生时代的首选编程语言。从 Docker 到 Kubernetes,全球顶尖科技企业都在采用 Go。点击了解 Go 语言的核心优势、实战窍门和未来走向,开启高效编程的全新体验!
内容概要:本文详细介绍了基于MATLAB/Simulink搭建的两端MMC-HVDC输电模型,重点讨论了模型预测控制(MPC)和电容均压策略的应用。模型采用C语言编写控制器,利用MPC实现对未来系统的预测并优化控制输入,确保系统性能最优。同时,通过电容均压策略维持电容电压的均衡,防止系统运行不稳定。文中展示了模型的具体参数设置和验证结果,证明了该模型在不同电压等级下的有效性和适应性。 适合人群:从事电力系统研究和技术开发的专业人士,尤其是对高压直流输电技术和MATLAB建模感兴趣的工程师。 使用场景及目标:适用于需要深入理解和研究MMC-HVDC输电系统的科研机构和企业。目标是通过该模型提高对高压直流输电系统的认识,优化控制系统设计,提升系统稳定性和效率。 其他说明:文章提供了详细的代码片段和仿真技巧,帮助读者更好地理解和实现相关技术。强调了在实际应用中需要注意的关键点,如预测步长与开关频率的匹配、仿真步长的调整等。
内容概要:本文详细介绍了基于西门子PLC的小区换热站自动控制系统的设计与实现。系统主要实现了流量和温度的自动控制与检测,通过高精度传感器和PLC的协同工作,确保热交换过程的最佳状态。文中涵盖了组态程序、图纸及IO口分配的具体内容,提供了详细的代码示例和技术细节。此外,还讨论了PID控制、防振荡逻辑、组态画面设计、IO分配规范等方面的技术要点,强调了系统的稳定性和响应速度。 适合人群:从事自动化控制领域的工程师和技术人员,尤其是熟悉PLC编程和换热站控制系统的专业人士。 使用场景及目标:适用于新建或改造小区换热站项目的规划与实施,旨在提高供热系统的稳定性和智能化水平,确保居民在寒冷季节享受到舒适的室内温度。 其他说明:文章不仅提供了理论指导,还包括了许多实际操作经验和技巧,如防抖动逻辑、信号抗干扰措施、组态画面优化等,有助于解决现场调试过程中可能遇到的问题。
仿真环境:Proteus8.11 SP0 编译环境:KEIL4 包含内容:Proteus仿真文件 + Keil4工程源码 功能细节:采用两个MCU的设计,主MCU为电梯本体控制器,从MCU为模拟各楼层的控制器,使用4*4按键模拟电梯的上下行以及出入操作
内容概要:本文详细介绍了光伏并网系统的关键组件及其控制策略,特别是在Simulink环境下搭建光储系统模型的经验。主要内容涵盖变步长扰动观察法MPPT算法、电网电压定向控制(VOC)、蓄电池双闭环控制等核心技术。文中不仅提供了具体的MATLAB/Simulink代码实现,还分享了许多实际调试过程中遇到的问题及解决方案。例如,在光照突变情况下,MPPT算法能够迅速响应并在短时间内稳定输出;电网电压定向控制通过精确的锁相环参数设置确保了频率跟踪误差在可控范围内;而蓄电池的双闭环控制则有效避免了充放电时的电压波动。 适合人群:对光伏发电系统感兴趣的工程技术人员,尤其是有一定Simulink建模基础的研究人员。 使用场景及目标:适用于希望深入了解光伏并网系统内部工作机制的技术人员,帮助他们掌握如何利用Simulink进行高效建模和优化。目标是在实际应用中提高系统的稳定性和效率。 其他说明:文章强调了理论与实践相结合的重要性,提醒读者在实际操作中需要注意的一些细节问题,如硬件死区补偿、多云天气下的爬坡抑制策略等。同时,作者还分享了一些实用的小技巧,比如通过调整PI参数来改善波形质量等。
高校就业信息平台的设计与实现——以仲恺农业工程学院为例.pdf
内容概要:本文详细解析了中兴ZXD2400电源电路图4.1版本,涵盖输入、转换和输出三大部分。输入部分介绍了LC滤波电路的作用及其参数计算方法;转换部分围绕UC3842芯片的工作原理展开,展示了其通过比较反馈电压和参考电压来实现电压稳定转换的功能;输出部分讨论了线性稳压芯片的应用。此外,还深入探讨了PWM控制、MOSFET驱动、补偿网络、电压采样、保护电路等关键设计细节,并提供了多个Python代码片段用于参数计算和电路特性模拟。文章不仅帮助读者理解电源电路的工作机制,还分享了许多实际操作经验和注意事项。 适合人群:从事电源设计的技术人员、电子工程师、DIY爱好者。 使用场景及目标:适用于希望深入了解电源电路设计原理和技术细节的人群,旨在提高读者对电源系统的理解和实际应用能力。 其他说明:文中提供的Python代码片段有助于快速定位关键芯片位置、计算重要参数,便于理论联系实际。同时提醒读者关注版本变更说明,避免因使用旧版图纸而导致的问题。
幕墙玻璃协同下索网结构自振特性分析.pdf
数据集-目标检测系列- 蜥蜴 检测数据集 lizard >> DataBall 标注文件格式:xml 项目地址:https://github.com/XIAN-HHappy/ultralytics-yolo-webui 通过webui 方式对ultralytics 的 detect 检测任务 进行: 1)数据预处理, 2)模型训练, 3)模型推理。 脚本运行方式: * 运行脚本: python webui_det.py or run_det.bat 根据readme.md步骤进行操作。
文档支持目录章节跳转同时还支持阅读器左侧大纲显示和章节快速定位,文档内容完整、条理清晰。文档内所有文字、图表、函数、目录等元素均显示正常,无任何异常情况,敬请您放心查阅与使用。文档仅供学习参考,请勿用作商业用途。 Rust 以内存安全、零成本抽象和并发高效的特性,重塑编程体验。无需垃圾回收,却能通过所有权与借用检查机制杜绝空指针、数据竞争等隐患。从底层系统开发到 Web 服务构建,从物联网设备到高性能区块链,它凭借出色的性能和可靠性,成为开发者的全能利器。拥抱 Rust,解锁高效、安全编程新境界!
文档支持目录章节跳转同时还支持阅读器左侧大纲显示和章节快速定位,文档内容完整、条理清晰。文档内所有文字、图表、函数、目录等元素均显示正常,无任何异常情况,敬请您放心查阅与使用。文档仅供学习参考,请勿用作商业用途。 编译闪电般迅速,并发性能卓越,部署轻松简单!Go 语言以极简设计理念和出色工程性能,成为云原生时代的首选编程语言。从 Docker 到 Kubernetes,全球顶尖科技企业都在采用 Go。点击了解 Go 语言的核心优势、实战窍门和未来走向,开启高效编程的全新体验!
内容概要:本文详细介绍了如何利用MobileNet和TensorFlow开发一个高效的移动端垃圾分类系统。首先,作者使用Kaggle上的垃圾分类数据集进行预处理,采用ImageDataGenerator进行数据增强,确保模型能够应对不同拍摄条件下的垃圾图像。接着,通过迁移学习方法,使用预训练的MobileNetV2作为基础模型,并对其顶部结构进行了修改,以适配四分类任务。为了防止过拟合,加入了GlobalAveragePooling2D和Dropout层。训练过程中采用了Adam优化器和余弦退火学习率调度策略,同时使用ReduceLROnPlateau回调机制动态调整学习率。最后,将模型转换为TFLite格式以便在移动设备上高效运行,并解决了RGB通道顺序的问题,使得模型能够在红米Note等低端设备上流畅运行,达到60fps的速度,内存占用仅200MB。 适合人群:对机器学习、深度学习感兴趣的开发者,尤其是希望了解如何在移动端部署图像分类模型的研究人员和技术爱好者。 使用场景及目标:适用于需要快速、准确地进行垃圾分类的应用场景,如智能垃圾桶、环保应用等。目标是提高垃圾分类效率,减少人为错误,推动智能化垃圾分类系统的普及。 其他说明:文中提到的一些优化技巧,如数据增强、模型结构调整以及学习率调度等,对于提升模型性能至关重要。此外,针对实际部署中遇到的问题,如RGB通道顺序不一致等,提供了具体的解决方案。
内容概要:本文详细介绍了直流无感无刷电机的方波控制方法及其初始位置检测方案。主要内容涵盖ADC和比较器结合用于初始位置检测的技术细节,包括代码示例;多种控制方式如开环控制、速度环控制和双闭环控制的具体实现;通信部分采用串口进行数据交换;多重保护机制确保系统的安全可靠;以及启动方式的选择和优化。此外,还讨论了一些硬件特色,如休眠电路和防打火电路的设计。 适合人群:从事电机控制系统设计的研发工程师和技术爱好者,尤其是对直流无感无刷电机有研究兴趣的专业人士。 使用场景及目标:适用于需要深入了解直流无感无刷电机控制原理的研究人员,帮助他们掌握具体的实现技术和优化技巧,从而应用于实际项目中,提高电机控制系统的性能和可靠性。 其他说明:文中提供了大量实用的代码片段和实践经验,强调了实际应用中的注意事项和调试技巧,对于解决常见问题非常有帮助。
基于TypeScript+three.js 实现的三维地质模型剖切,以及剖面的补充+源码+项目文档,适合毕业设计、课程设计、项目开发。项目源码已经过严格测试,可以放心参考并在此基础上延申使用,详情见md文档 基于TypeScript+three.js 实现的三维地质模型剖切,以及剖面的补充+源码+项目文档,适合毕业设计、课程设计、项目开发。项目源码已经过严格测试,可以放心参考并在此基础上延申使用,详情见md文档~ 基于TypeScript+three.js 实现的三维地质模型剖切,以及剖面的补充+源码+项目文档,适合毕业设计、课程设计、项目开发。项目源码已经过严格测试,可以放心参考并在此基础上延申使用,详情见md文档 基于TypeScript+three.js 实现的三维地质模型剖切,以及剖面的补充+源码+项目文档,适合毕业设计、课程设计、项目开发。项目源码已经过严格测试,可以放心参考并在此基础上延申使用,详情见md文档 基于TypeScript+three.js 实现的三维地质模型剖切,以及剖面的补充+源码+项目文档,适合毕业设计、课程设计、项目开发。项目源码已经过严格测试,可以放心参考并在此基础上延申使用,详情见md文档
内容概要:本文详细介绍了基于FPGA的UART串口收发Verilog源码实现,适用于RS232和RS422协议。UART通信通过两根线(TX发送和RX接收)进行异步数据传输,每帧数据包含起始位、数据位、校验位(可选)和停止位。文中提供了完整的Verilog代码,包括模块定义、波特率发生器、发送模块、接收模块以及RS232与RS422的适配方法。代码采用了参数化设计,允许用户轻松调整波特率、数据位宽度、校验位和停止位等参数。此外,还讨论了一些优化技巧,如使用状态机设计、双倍采样抗干扰、异或运算生成校验位等。 适合人群:具备一定FPGA和Verilog编程基础的研发人员,特别是从事嵌入式系统、工业控制等领域工作的工程师。 使用场景及目标:①需要实现高效可靠的UART串口通信;②希望通过参数化设计快速适配不同通信需求;③希望了解UART通信的具体实现细节和技术优化方法。 其他说明:本文提供的代码已在Xilinx Artix-7平台上进行了实测,资源占用少,稳定性高,适用于工业控制和其他需要可靠串口通信的应用场景。
基于微信小程序的PHP商城,功能全,界面美 有商品到发货,收货的全过程截图, 有退货到审批
Delphi 12.3控件之RADStudio-12-3-29-0-55362-2017-KeyPatch.7z
内容概要:本文详细探讨了利用改进粒子群算法(MOPSO)解决分布式电源(DG)在配电网中的选址和定容问题。文中介绍了多目标优化的目标函数构建方法,如网损、投资成本和电压偏差的计算,并展示了如何通过动态惯性权重、随机扰动和拥挤度排序等手段提高算法性能。此外,文章还讨论了帕累托解集的维护和最终解的选择策略,强调了实际应用中的物理可行性和参数调优经验。 适合人群:从事电力系统规划、优化算法研究以及相关领域的工程师和技术人员。 使用场景及目标:适用于需要在配电网中合理配置分布式电源的实际工程项目,旨在降低网损、控制投资成本并维持电压稳定,从而提高电网的整体经济性和稳定性。 其他说明:文中提供了具体的代码实现和实际案例分析,帮助读者更好地理解和应用所介绍的方法。同时,作者指出,尽管算法能够提供多种平衡解,但在实际应用中还需结合具体情况进行选择。