`
- 浏览:
34246 次
- 性别:
- 来自:
北京
-
来源:赛迪网技术社区
引言
数据库的设计范式是数据库设计所需要满足的规范,满足这些规范的数据库是简洁的、结构明晰的,同时,不会发生插入(insert)、删除(delete)和更新(update)操作异常。反之则是乱七八糟,不仅给数据库的编程人员制造麻烦,而且面目可憎,可能存储了大量不需要的冗余信息。
设计范式是不是很难懂呢?非也,大学教材上给我们一堆数学公式我们当然看不懂,也记不住。所以我们很多人就根本不按照范式来设计数据库。
实质上,设计范式用很形象、很简洁的话语就能说清楚,道明白。本文将对范式进行通俗地说明,并以笔者曾经设计的一个简单论坛的数据库为例来讲解怎样将这些范式应用于实际工程。
范式说明
第一范式(1NF):数据库表中的字段都是单一属性的,不可再分。这个单一属性由基本类型构成,包括整型、实数、字符型、逻辑型、日期型等。
很显然,在当前的任何关系数据库管理系统(DBMS)中,傻瓜也不可能做出不符合第一范式的数据库,因为这些DBMS不允许你把数据库表的一列再分成二列或多列。因此,你想在现有的DBMS中设计出不符合第一范式的数据库都是不可能的。
第二范式(2NF):数据库表中不存在非关键字段对任一候选关键字段的部分函数依赖(部分函数依赖指的是存在组合关键字中的某些字段决定非关键字段的情况),也即所有非关键字段都完全依赖于任意一组候选关键字。
假定选课关系表为SelectCourse(学号, 姓名, 年龄, 课程名称, 成绩, 学分),关键字为组合关键字(学号, 课程名称),因为存在如下决定关系:
(学号, 课程名称) → (姓名, 年龄, 成绩, 学分)
这个数据库表不满足第二范式,因为存在如下决定关系:
(课程名称) → (学分)
(学号) → (姓名, 年龄)
即存在组合关键字中的字段决定非关键字的情况。
由于不符合2NF,这个选课关系表会存在如下问题:
(1) 数据冗余:
同一门课程由n个学生选修,"学分"就重复n-1次;同一个学生选修了m门课程,姓名和年龄就重复了m-1次。
(2) 更新异常:
若调整了某门课程的学分,数据表中所有行的"学分"值都要更新,否则会出现同一门课程学分不同的情况。
(3) 插入异常:
假设要开设一门新的课程,暂时还没有人选修。这样,由于还没有"学号"关键字,课程名称和学分也无法记录入数据库。
(4) 删除异常:
假设一批学生已经完成课程的选修,这些选修记录就应该从数据库表中删除。但是,与此同时,课程名称和学分信息也被删除了。很显然,这也会导致插入异常。
把选课关系表SelectCourse改为如下三个表:
学生:Student(学号, 姓名, 年龄);
课程:Course(课程名称, 学分);
选课关系:SelectCourse(学号, 课程名称, 成绩)。
这样的数据库表是符合第二范式的,消除了数据冗余、更新异常、插入异常和删除异常。
另外,所有单关键字的数据库表都符合第二范式,因为不可能存在组合关键字。
第三范式(3NF):在第二范式的基础上,数据表中如果不存在非关键字段对任一候选关键字段的传递函数依赖则符合第三范式。所谓传递函数依赖,指的是如果存在"A → B → C"的决定关系,则C传递函数依赖于A。因此,满足第三范式的数据库表应该不存在如下依赖关系:
关键字段 → 非关键字段x → 非关键字段y
假定学生关系表为Student(学号, 姓名, 年龄, 所在学院, 学院地点, 学院电话),关键字为单一关键字"学号",因为存在如下决定关系:
(学号) → (姓名, 年龄, 所在学院, 学院地点, 学院电话)
这个数据库是符合2NF的,但是不符合3NF,因为存在如下决定关系:
(学号) → (所在学院) → (学院地点, 学院电话)
即存在非关键字段"学院地点"、"学院电话"对关键字段"学号"的传递函数依赖。
它也会存在数据冗余、更新异常、插入异常和删除异常的情况,读者可自行分析得知。
把学生关系表分为如下两个表:
学生:(学号, 姓名, 年龄, 所在学院);
学院:(学院, 地点, 电话)。
这样的数据库表是符合第三范式的,消除了数据冗余、更新异常、插入异常和删除异常。
鲍依斯-科得范式(BCNF):在第三范式的基础上,数据库表中如果不存在任何字段对任一候选关键字段的传递函数依赖则符合第三范式。
假设仓库管理关系表为StorehouseManage(仓库ID, 存储物品ID, 管理员ID, 数量),且有一个管理员只在一个仓库工作;一个仓库可以存储多种物品。这个数据库表中存在如下决定关系:
(仓库ID, 存储物品ID) →(管理员ID, 数量)
(管理员ID, 存储物品ID) → (仓库ID, 数量)
所以,(仓库ID, 存储物品ID)和(管理员ID, 存储物品ID)都是StorehouseManage的候选关键字,表中的唯一非关键字段为数量,它是符合第三范式的。但是,由于存在如下决定关系:
(仓库ID) → (管理员ID)
(管理员ID) → (仓库ID)
即存在关键字段决定关键字段的情况,所以其不符合BCNF范式。它会出现如下异常情况:
(1) 删除异常:
当仓库被清空后,所有"存储物品ID"和"数量"信息被删除的同时,"仓库ID"和"管理员ID"信息也被删除了。
(2) 插入异常:
当仓库没有存储任何物品时,无法给仓库分配管理员。
(3) 更新异常:
如果仓库换了管理员,则表中所有行的管理员ID都要修改。
把仓库管理关系表分解为二个关系表:
仓库管理:StorehouseManage(仓库ID, 管理员ID);
仓库:Storehouse(仓库ID, 存储物品ID, 数量)。
这样的数据库表是符合BCNF范式的,消除了删除异常、插入异常和更新异常。
范式应用
我们来逐步搞定一个论坛的数据库,有如下信息:
(1) 用户:用户名,email,主页,电话,联系地址
(2) 帖子:发帖标题,发帖内容,回复标题,回复内容
第一次我们将数据库设计为仅仅存在表:
用户名 email 主页 电话 联系地址 发帖标题 发帖内容 回复标题 回复内容
这个数据库表符合第一范式,但是没有任何一组候选关键字能决定数据库表的整行,唯一的关键字段用户名也不能完全决定整个元组。我们需要增加"发帖ID"、"回复ID"字段,即将表修改为:
用户名 email 主页 电话 联系地址 发帖ID 发帖标题 发帖内容 回复ID 回复标题 回复内容
这样数据表中的关键字(用户名,发帖ID,回复ID)能决定整行:
(用户名,发帖ID,回复ID) → (email,主页,电话,联系地址,发帖标题,发帖内容,回复标题,回复内容)
但是,这样的设计不符合第二范式,因为存在如下决定关系:
(用户名) → (email,主页,电话,联系地址)
(发帖ID) → (发帖标题,发帖内容)
(回复ID) → (回复标题,回复内容)
即非关键字段部分函数依赖于候选关键字段,很明显,这个设计会导致大量的数据冗余和操作异常。
我们将数据库表分解为(带下划线的为关键字):
(1) 用户信息:用户名,email,主页,电话,联系地址
(2) 帖子信息:发帖ID,标题,内容
(3) 回复信息:回复ID,标题,内容
(4) 发贴:用户名,发帖ID
(5) 回复:发帖ID,回复ID
这样的设计是满足第1、2、3范式和BCNF范式要求的,但是这样的设计是不是最好的呢?不一定。
观察可知,第4项"发帖"中的"用户名"和"发帖ID"之间是1:N的关系,因此我们可以把"发帖"合并到第2项的"帖子信息"中;第5项"回复"中的 "发帖ID"和"回复ID"之间也是1:N的关系,因此我们可以把"回复"合并到第3项的"回复信息"中。这样可以一定量地减少数据冗余,新的设计为:
(1) 用户信息:用户名,email,主页,电话,联系地址
(2) 帖子信息:用户名,发帖ID,标题,内容
(3) 回复信息:发帖ID,回复ID,标题,内容
由此可以看出,并不一定要强行满足范式的要求,对于1:N关系,当1的一边合并到N的那边后,N的那边就不再满足第二范式了,但是这种设计反而比较好!
对于M:N的关系,不能将M一边或N一边合并到另一边去,这样会导致不符合范式要求,同时导致操作异常和数据冗余。
对于1:1的关系,我们可以将左边的1或者右边的1合并到另一边去,设计导致不符合范式要求,但是并不会导致操作异常和数据冗余。
结论
满足范式要求的数据库设计是结构清晰的,同时可避免数据冗余和操作异常。这并意味着不符合范式要求的设计一定是错误的,在数据库表中存在1:1或1:N关系这种较特殊的情况下,合并导致的不符合范式要求反而是合理的。
在我们设计数据库的时候,一定要时刻考虑范式的要求。
分享到:
Global site tag (gtag.js) - Google Analytics
相关推荐
### 数据库设计三大范式应用实例剖析 #### 引言 数据库的设计范式是指一系列用于指导数据库设计的规范化准则,其目的是确保数据的完整性、减少数据冗余,并提高数据库的操作效率。遵循这些范式可以避免在数据库...
"数据库设计三大范式应用实例剖析" 数据库设计是数据库系统的核心部分,直接影响着数据库的性能、安全性和可维护性。数据库设计的目的是为了使数据库系统满足某些标准,使得数据库系统更加简洁、明晰、易于维护和...
### 数据库设计三大范式应用实例剖析 #### 引言 数据库设计的规范性对于确保数据的完整性和一致性至关重要。数据库设计范式是一系列规则,它们帮助开发者创建出既高效又易于维护的数据模型。遵循这些规范能有效...
【计算机等考三级数据库基础:数据库设计三大范式应用实例剖析】 数据库设计是构建高效、稳定、易维护的信息系统的基础,而三大范式——第一范式(1NF)、第二范式(2NF)和第三范式(3NF)是确保数据库设计规范的...
【数据库设计三大范式】是数据库设计的基本原则,它们确保了数据库的结构合理、数据一致性和减少冗余。这三个范式分别是第一范式(1NF)、第二范式(2NF)和第三范式(3NF)。 **第一范式(1NF)**要求数据库表中的...
数据库设计的三大范式——第一范式(1NF)、第二范式(2NF)和第三范式(3NF)——是构建高效、无冗余、易于维护的数据库的基础。它们确保了数据的一致性和完整性,避免了数据异常,如插入异常、删除异常和更新异常...
如需深入了解数据库设计的第三范式,你可以参考提供的文件《数据库设计三大范式应用实例剖析.docx》和《数据库范式.pdf》。这些文档应该会提供更详细的理论解释和实例分析,帮助你更好地掌握3NF在实际项目中的应用。
数据库设计三大范式的应用实例剖析,数据库设计范式是数据库设计所需要满足的规范,满足这些规范的数据库是简洁的、结构明晰的,同时,不会发生插入(insert)、删除(delete)和更新(update)操作异常。...
数据库的设计范式是数据库设计的基础原则,用于确保数据的一致性、减少冗余和避免操作异常。这些范式主要包括第一范式(1NF)、第二范式(2NF)、第三范式(3NF)以及更高层次的鲍依斯-科得范式(BCNF)。以下是对...
数据库设计是信息系统开发中至关重要的环节,它直接关系到系统的性能、安全性和可维护性...通过实例分析和具体操作的讲解,读者能够对数据库设计有更深刻的理解,并在实际工作中运用这些知识构建高效的数据库应用系统。
本资源的标题和描述都是“SQL 第三范式 规范化设计数据库范例 数据库设计示例”,这表明该资源的主要内容是介绍 SQL 第三范式在数据库设计中的应用实例。 标签解释 标签“SQL 第三范式”表明该资源的核心内容是 ...
数据库设计还涉及范式理论,包括第一范式(1NF)、第二范式(2NF)、第三范式(3NF)以及更高的BCNF(博科斯范式)等。遵循这些范式可以避免数据冗余,提高数据一致性。例如,如果"Orders"表中包含了用户的所有信息...
数据库范式(实例分析) ...通过对“交易订单”实例的分析,我们可以看到,数据库范式是关系数据库设计中的一种重要的规范化方法,旨在消除数据冗余,减少数据之间的依赖关系,提高数据的一致性和完整性。
良好的数据库设计需要遵循范式理论,例如第一范式(1NF)、第二范式(2NF)和第三范式(3NF),以减少数据冗余和提高数据一致性。 1. 实体关系模型(ER模型):用图形方式表示实体、属性和关系,是数据库设计的起点...