`

并发中的一些线程帮助CountDownLatch

 
阅读更多

在java 1.5中,提供了一些非常有用的辅助类来帮助我们进行并发编程,比如CountDownLatch,CyclicBarrier和Semaphore,今天我们就来学习一下这三个辅助类的用法。

以下是本文目录大纲:

一.CountDownLatch用法

二.CyclicBarrier用法

三.Semaphore用法

一.CountDownLatch用法

CountDownLatch类位于java.util.concurrent包下,利用它可以实现类似计数器的功能。比如有一个任务A,它要等待其他4个任务执行完毕之后才能执行,此时就可以利用CountDownLatch来实现这种功能了。

CountDownLatch类只提供了一个构造器:

 
1
public CountDownLatch(int count) {  };  //参数count为计数值

然后下面这3个方法是CountDownLatch类中最重要的方法:

1
2
3
public void await() throws InterruptedException { };   //调用await()方法的线程会被挂起,它会等待直到count值为0才继续执行
public boolean await(long timeout, TimeUnit unit) throws InterruptedException { };  //和await()类似,只不过等待一定的时间后count值还没变为0的话就会继续执行
public void countDown() { };  //将count值减1

下面看一个例子大家就清楚CountDownLatch的用法了:

 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
public class Test {
     public static void main(String[] args) {  
         final CountDownLatch latch = new CountDownLatch(2);
 
         new Thread(){
             public void run() {
                 try {
                     System.out.println("子线程"+Thread.currentThread().getName()+"正在执行");
                    Thread.sleep(3000);
                    System.out.println("子线程"+Thread.currentThread().getName()+"执行完毕");
                    latch.countDown();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
             };
         }.start();
 
         new Thread(){
             public void run() {
                 try {
                     System.out.println("子线程"+Thread.currentThread().getName()+"正在执行");
                     Thread.sleep(3000);
                     System.out.println("子线程"+Thread.currentThread().getName()+"执行完毕");
                     latch.countDown();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
             };
         }.start();
 
         try {
             System.out.println("等待2个子线程执行完毕...");
            latch.await();
            System.out.println("2个子线程已经执行完毕");
            System.out.println("继续执行主线程");
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
     }
}

执行结果:

1
2
3
4
5
6
7
线程Thread-0正在执行
线程Thread-1正在执行
等待2个子线程执行完毕...
线程Thread-0执行完毕
线程Thread-1执行完毕
2个子线程已经执行完毕
继续执行主线程

二.CyclicBarrier用法

字面意思回环栅栏,通过它可以实现让一组线程等待至某个状态之后再全部同时执行。叫做回环是因为当所有等待线程都被释放以后,CyclicBarrier可以被重用。我们暂且把这个状态就叫做barrier,当调用await()方法之后,线程就处于barrier了。

CyclicBarrier类位于java.util.concurrent包下,CyclicBarrier提供2个构造器:

1
2
3
4
5
public CyclicBarrier(int parties, Runnable barrierAction) {
}
 
public CyclicBarrier(int parties) {
}

参数parties指让多少个线程或者任务等待至barrier状态;参数barrierAction为当这些线程都达到barrier状态时会执行的内容。

然后CyclicBarrier中最重要的方法就是await方法,它有2个重载版本:

 
1
2
public int await() throws InterruptedException, BrokenBarrierException { };
public int await(long timeout, TimeUnit unit)throws InterruptedException,BrokenBarrierException,TimeoutException { };

第一个版本比较常用,用来挂起当前线程,直至所有线程都到达barrier状态再同时执行后续任务;

第二个版本是让这些线程等待至一定的时间,如果还有线程没有到达barrier状态就直接让到达barrier的线程执行后续任务。

下面举几个例子就明白了:

假若有若干个线程都要进行写数据操作,并且只有所有线程都完成写数据操作之后,这些线程才能继续做后面的事情,此时就可以利用CyclicBarrier了:

 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
public class Test {
    public static void main(String[] args) {
        int N = 4;
        CyclicBarrier barrier  = new CyclicBarrier(N);
        for(int i=0;i<N;i++)
            new Writer(barrier).start();
    }
    static class Writer extends Thread{
        private CyclicBarrier cyclicBarrier;
        public Writer(CyclicBarrier cyclicBarrier) {
            this.cyclicBarrier = cyclicBarrier;
        }
 
        @Override
        public void run() {
            System.out.println("线程"+Thread.currentThread().getName()+"正在写入数据...");
            try {
                Thread.sleep(5000);      //以睡眠来模拟写入数据操作
                System.out.println("线程"+Thread.currentThread().getName()+"写入数据完毕,等待其他线程写入完毕");
                cyclicBarrier.await();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }catch(BrokenBarrierException e){
                e.printStackTrace();
            }
            System.out.println("所有线程写入完毕,继续处理其他任务...");
        }
    }
}

执行结果:

1
2
3
4
5
6
7
8
9
10
11
12
线程Thread-0正在写入数据...
线程Thread-3正在写入数据...
线程Thread-2正在写入数据...
线程Thread-1正在写入数据...
线程Thread-2写入数据完毕,等待其他线程写入完毕
线程Thread-0写入数据完毕,等待其他线程写入完毕
线程Thread-3写入数据完毕,等待其他线程写入完毕
线程Thread-1写入数据完毕,等待其他线程写入完毕
所有线程写入完毕,继续处理其他任务...
所有线程写入完毕,继续处理其他任务...
所有线程写入完毕,继续处理其他任务...
所有线程写入完毕,继续处理其他任务...

从上面输出结果可以看出,每个写入线程执行完写数据操作之后,就在等待其他线程写入操作完毕。

当所有线程线程写入操作完毕之后,所有线程就继续进行后续的操作了。

如果说想在所有线程写入操作完之后,进行额外的其他操作可以为CyclicBarrier提供Runnable参数:

 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
public class Test {
    public static void main(String[] args) {
        int N = 4;
        CyclicBarrier barrier  = new CyclicBarrier(N,new Runnable() {
            @Override
            public void run() {
                System.out.println("当前线程"+Thread.currentThread().getName());  
            }
        });
 
        for(int i=0;i<N;i++)
            new Writer(barrier).start();
    }
    static class Writer extends Thread{
        private CyclicBarrier cyclicBarrier;
        public Writer(CyclicBarrier cyclicBarrier) {
            this.cyclicBarrier = cyclicBarrier;
        }
 
        @Override
        public void run() {
            System.out.println("线程"+Thread.currentThread().getName()+"正在写入数据...");
            try {
                Thread.sleep(5000);      //以睡眠来模拟写入数据操作
                System.out.println("线程"+Thread.currentThread().getName()+"写入数据完毕,等待其他线程写入完毕");
                cyclicBarrier.await();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }catch(BrokenBarrierException e){
                e.printStackTrace();
            }
            System.out.println("所有线程写入完毕,继续处理其他任务...");
        }
    }
}

运行结果:

1
2
3
4
5
6
7
8
9
10
11
12
13
线程Thread-0正在写入数据...
线程Thread-1正在写入数据...
线程Thread-2正在写入数据...
线程Thread-3正在写入数据...
线程Thread-0写入数据完毕,等待其他线程写入完毕
线程Thread-1写入数据完毕,等待其他线程写入完毕
线程Thread-2写入数据完毕,等待其他线程写入完毕
线程Thread-3写入数据完毕,等待其他线程写入完毕
当前线程Thread-3
所有线程写入完毕,继续处理其他任务...
所有线程写入完毕,继续处理其他任务...
所有线程写入完毕,继续处理其他任务...
所有线程写入完毕,继续处理其他任务...

从结果可以看出,当四个线程都到达barrier状态后,会从四个线程中选择一个线程去执行Runnable。

下面看一下为await指定时间的效果:

 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
public class Test {
    public static void main(String[] args) {
        int N = 4;
        CyclicBarrier barrier  = new CyclicBarrier(N);
 
        for(int i=0;i<N;i++) {
            if(i<N-1)
                new Writer(barrier).start();
            else {
                try {
                    Thread.sleep(5000);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                new Writer(barrier).start();
            }
        }
    }
    static class Writer extends Thread{
        private CyclicBarrier cyclicBarrier;
        public Writer(CyclicBarrier cyclicBarrier) {
            this.cyclicBarrier = cyclicBarrier;
        }
 
        @Override
        public void run() {
            System.out.println("线程"+Thread.currentThread().getName()+"正在写入数据...");
            try {
                Thread.sleep(5000);      //以睡眠来模拟写入数据操作
                System.out.println("线程"+Thread.currentThread().getName()+"写入数据完毕,等待其他线程写入完毕");
                try {
                    cyclicBarrier.await(2000, TimeUnit.MILLISECONDS);
                } catch (TimeoutException e) {
                    // TODO Auto-generated catch block
                    e.printStackTrace();
                }
            } catch (InterruptedException e) {
                e.printStackTrace();
            }catch(BrokenBarrierException e){
                e.printStackTrace();
            }
            System.out.println(Thread.currentThread().getName()+"所有线程写入完毕,继续处理其他任务...");
        }
    }
}

执行结果:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
线程Thread-0正在写入数据...
线程Thread-2正在写入数据...
线程Thread-1正在写入数据...
线程Thread-2写入数据完毕,等待其他线程写入完毕
线程Thread-0写入数据完毕,等待其他线程写入完毕
线程Thread-1写入数据完毕,等待其他线程写入完毕
线程Thread-3正在写入数据...
java.util.concurrent.TimeoutException
Thread-1所有线程写入完毕,继续处理其他任务...
Thread-0所有线程写入完毕,继续处理其他任务...
    at java.util.concurrent.CyclicBarrier.dowait(Unknown Source)
    at java.util.concurrent.CyclicBarrier.await(Unknown Source)
    at com.cxh.test1.Test$Writer.run(Test.java:58)
java.util.concurrent.BrokenBarrierException
    at java.util.concurrent.CyclicBarrier.dowait(Unknown Source)
    at java.util.concurrent.CyclicBarrier.await(Unknown Source)
    at com.cxh.test1.Test$Writer.run(Test.java:58)
java.util.concurrent.BrokenBarrierException
    at java.util.concurrent.CyclicBarrier.dowait(Unknown Source)
    at java.util.concurrent.CyclicBarrier.await(Unknown Source)
    at com.cxh.test1.Test$Writer.run(Test.java:58)
Thread-2所有线程写入完毕,继续处理其他任务...
java.util.concurrent.BrokenBarrierException
线程Thread-3写入数据完毕,等待其他线程写入完毕
    at java.util.concurrent.CyclicBarrier.dowait(Unknown Source)
    at java.util.concurrent.CyclicBarrier.await(Unknown Source)
    at com.cxh.test1.Test$Writer.run(Test.java:58)
Thread-3所有线程写入完毕,继续处理其他任务...

上面的代码在main方法的for循环中,故意让最后一个线程启动延迟,因为在前面三个线程都达到barrier之后,等待了指定的时间发现第四个线程还没有达到barrier,就抛出异常并继续执行后面的任务。

另外CyclicBarrier是可以重用的,看下面这个例子:

 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
public class Test {
    public static void main(String[] args) {
        int N = 4;
        CyclicBarrier barrier  = new CyclicBarrier(N);
 
        for(int i=0;i<N;i++) {
            new Writer(barrier).start();
        }
 
        try {
            Thread.sleep(25000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
 
        System.out.println("CyclicBarrier重用");
 
        for(int i=0;i<N;i++) {
            new Writer(barrier).start();
        }
    }
    static class Writer extends Thread{
        private CyclicBarrier cyclicBarrier;
        public Writer(CyclicBarrier cyclicBarrier) {
            this.cyclicBarrier = cyclicBarrier;
        }
 
        @Override
        public void run() {
            System.out.println("线程"+Thread.currentThread().getName()+"正在写入数据...");
            try {
                Thread.sleep(5000);      //以睡眠来模拟写入数据操作
                System.out.println("线程"+Thread.currentThread().getName()+"写入数据完毕,等待其他线程写入完毕");
 
                cyclicBarrier.await();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }catch(BrokenBarrierException e){
                e.printStackTrace();
            }
            System.out.println(Thread.currentThread().getName()+"所有线程写入完毕,继续处理其他任务...");
        }
    }
}

执行结果:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
线程Thread-0正在写入数据...
线程Thread-1正在写入数据...
线程Thread-3正在写入数据...
线程Thread-2正在写入数据...
线程Thread-1写入数据完毕,等待其他线程写入完毕
线程Thread-3写入数据完毕,等待其他线程写入完毕
线程Thread-2写入数据完毕,等待其他线程写入完毕
线程Thread-0写入数据完毕,等待其他线程写入完毕
Thread-0所有线程写入完毕,继续处理其他任务...
Thread-3所有线程写入完毕,继续处理其他任务...
Thread-1所有线程写入完毕,继续处理其他任务...
Thread-2所有线程写入完毕,继续处理其他任务...
CyclicBarrier重用
线程Thread-4正在写入数据...
线程Thread-5正在写入数据...
线程Thread-6正在写入数据...
线程Thread-7正在写入数据...
线程Thread-7写入数据完毕,等待其他线程写入完毕
线程Thread-5写入数据完毕,等待其他线程写入完毕
线程Thread-6写入数据完毕,等待其他线程写入完毕
线程Thread-4写入数据完毕,等待其他线程写入完毕
Thread-4所有线程写入完毕,继续处理其他任务...
Thread-5所有线程写入完毕,继续处理其他任务...
Thread-6所有线程写入完毕,继续处理其他任务...
Thread-7所有线程写入完毕,继续处理其他任务...

从执行结果可以看出,在初次的4个线程越过barrier状态后,又可以用来进行新一轮的使用。而CountDownLatch无法进行重复使用。

三.Semaphore用法

Semaphore翻译成字面意思为 信号量,Semaphore可以控同时访问的线程个数,通过 acquire() 获取一个许可,如果没有就等待,而 release() 释放一个许可。

Semaphore类位于java.util.concurrent包下,它提供了2个构造器:

 
1
2
3
4
5
6
public Semaphore(int permits) {          //参数permits表示许可数目,即同时可以允许多少线程进行访问
    sync = new NonfairSync(permits);
}
public Semaphore(int permits, boolean fair) {    //这个多了一个参数fair表示是否是公平的,即等待时间越久的越先获取许可
    sync = (fair)? new FairSync(permits) : new NonfairSync(permits);
}

下面说一下Semaphore类中比较重要的几个方法,首先是acquire()、release()方法:

 
1
2
3
4
public void acquire() throws InterruptedException {  }     //获取一个许可
public void acquire(int permits) throws InterruptedException { }    //获取permits个许可
public void release() { }          //释放一个许可
public void release(int permits) { }    //释放permits个许可

acquire()用来获取一个许可,若无许可能够获得,则会一直等待,直到获得许可。

release()用来释放许可。注意,在释放许可之前,必须先获获得许可。

这4个方法都会被阻塞,如果想立即得到执行结果,可以使用下面几个方法:

1
2
3
4
public boolean tryAcquire() { };    //尝试获取一个许可,若获取成功,则立即返回true,若获取失败,则立即返回false
public boolean tryAcquire(long timeout, TimeUnit unit) throws InterruptedException { };  //尝试获取一个许可,若在指定的时间内获取成功,则立即返回true,否则则立即返回false
public boolean tryAcquire(int permits) { }; //尝试获取permits个许可,若获取成功,则立即返回true,若获取失败,则立即返回false
public boolean tryAcquire(int permits, long timeout, TimeUnit unit) throws InterruptedException { }; //尝试获取permits个许可,若在指定的时间内获取成功,则立即返回true,否则则立即返回false

另外还可以通过availablePermits()方法得到可用的许可数目。

下面通过一个例子来看一下Semaphore的具体使用:

假若一个工厂有5台机器,但是有8个工人,一台机器同时只能被一个工人使用,只有使用完了,其他工人才能继续使用。那么我们就可以通过Semaphore来实现:

 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
public class Test {
    public static void main(String[] args) {
        int N = 8;            //工人数
        Semaphore semaphore = new Semaphore(5); //机器数目
        for(int i=0;i<N;i++)
            new Worker(i,semaphore).start();
    }
 
    static class Worker extends Thread{
        private int num;
        private Semaphore semaphore;
        public Worker(int num,Semaphore semaphore){
            this.num = num;
            this.semaphore = semaphore;
        }
 
        @Override
        public void run() {
            try {
                semaphore.acquire();
                System.out.println("工人"+this.num+"占用一个机器在生产...");
                Thread.sleep(2000);
                System.out.println("工人"+this.num+"释放出机器");
                semaphore.release();          
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
    }
}

执行结果:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
工人0占用一个机器在生产...
工人1占用一个机器在生产...
工人2占用一个机器在生产...
工人4占用一个机器在生产...
工人5占用一个机器在生产...
工人0释放出机器
工人2释放出机器
工人3占用一个机器在生产...
工人7占用一个机器在生产...
工人4释放出机器
工人5释放出机器
工人1释放出机器
工人6占用一个机器在生产...
工人3释放出机器
工人7释放出机器
工人6释放出机器

下面对上面说的三个辅助类进行一个总结:

1)CountDownLatch和CyclicBarrier都能够实现线程之间的等待,只不过它们侧重点不同:

CountDownLatch一般用于某个线程A等待若干个其他线程执行完任务之后,它才执行;

而CyclicBarrier一般用于一组线程互相等待至某个状态,然后这一组线程再同时执行;

另外,CountDownLatch是不能够重用的,而CyclicBarrier是可以重用的。

2)Semaphore其实和锁有点类似,它一般用于控制对某组资源的访问权限。

分享到:
评论

相关推荐

    mybaits 多线程 实现数据批量插入 (运用CountDownLatch实现闭锁)

    mybaits 多线程 实现数据批量插入 (运用CountDownLatch实现闭锁) 1、mybatis批处理 2、数据分批量查询 3、数据分批量插入

    2023年最新Java高并发多线程面试题

    内容概要:最新2023年Java高并发多线程后端面试题整理, 包含线程池,并发集合,volatile,CountDownLatch,Semaphore,Phaser,AQS,ReentrantLock,ReentrantLock等等问题, 用简洁明了的语言,通俗易懂地阐述了高...

    【2018最新最详细】并发多线程教程

    【2018最新最详细】并发多线程教程,课程结构如下 1.并发编程的优缺点 2.线程的状态转换以及基本操作 3.java内存模型以及happens-before规则 4.彻底理解synchronized 5.彻底理解volatile 6.你以为你真的了解final吗...

    java线程并发countdownlatch类使用示例

    javar的CountDownLatch是个计数器,它有一个初始数,等待这个计数器的线程必须等到计数器倒数到零时才可继续。

    Java并发编程一CountDownLatch、CyclicBarrier、Semaphore初使用

    Java并发编程一CountDownLatch、CyclicBarrier、Semaphore初使用 CountDownLatch、CyclicBarrier、Semaphore这些线程协作工具类是基于AQS的,看完这篇博客后可以去看下面这篇博客,了解它们是如何实现的。 Java并发...

    Java线程并发工具类CountDownLatch原理及用法

    主要介绍了Java线程并发工具类CountDownLatch原理及用法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

    Java多线程之并发工具类

    一、总论:在JDK中提供了几种并发工具类  1)CountDownLatch(同步倒数计数器:等待多线程(或者多步骤)完成)  2)CyclicBarrier(循环屏障:同步屏障)  3)Semaphore(信号量:控制并发进程数)  主要参考...

    Java中的CountDownLatch类最全讲义

    1.1 并发编程与线程同步 1.2 CountDownLatch概述 CountDownLatch的基本用法 2.1 创建CountDownLatch对象 2.2 await()方法 2.3 countDown()方法 实现多线程任务的同步 3.1 场景介绍 3.2 使用CountDownLatch实现同步 ...

    【并发编程】 — CountDownLatch原理简介 + 使用方法

    文章目录1 原理简介2 具体使用方法2.1 demo1 — await不传入时间,保证当前线程的其他操作在最后执行2.2 demo2 — await传入时间t,当前线程等其他线程时间t后就运行其他操作2.3 发令枪 源码地址:...

    JUC多线程学习个人笔记

    JUC(Java Util Concurrent)是Java中用于并发编程的工具包,提供了一组接口和类,用于...并发工具类:JUC提供了一些并发编程的工具类,如Semaphore、CountDownLatch、CyclicBarrier等,可以实现线程间的协作和同步。

    汪文君高并发编程实战视频资源下载.txt

    │ 高并发编程第一阶段06讲、用Runnable接口将线程的逻辑执行单元从控制中抽取出来.mp4 │ 高并发编程第一阶段07讲、策略模式在Thread和Runnable中的应用分析.mp4 │ 高并发编程第一阶段08讲、构造Thread对象你...

    基础技术部牛路《Java多线程入阶分享》纯干货

    Java多线程入阶干货分享 1.使用线程的经验:设置名称、响应中断、...7.并发流程控制手段:CountDownLatch、Barrier 8.定时器:ScheduledExecutorService、大规模定时器TimerWheel 9.并发三大定律 10.图书、相关网络资源

    Java并发程序设计教程

    7、并发流程控制手段:CountDownlatch、Barrier 8、定时器: ScheduledExecutorService、大规模定时器TimerWheel 9、并发三大定律:Amdahl、Gustafson、Sun-Ni 10、神人和图书、相关网络资源 11、业界发展情况: GPGPU...

    Java并发编程基础.pdf

    Java并发编程基础主要包括以下几个核心方面: ...并发工具类:掌握Java并发包java.util.concurrent中提供的各种工具类,如CountDownLatch、CyclicBarrier、Semaphore等,它们简化了并发编程的复杂性。

    并发编程示例,涉及到AtomicXXX、CountDownLatch、线程池等

    并发编程的一些小示例 1.等待通知的几种方式,包括Object的wait/notify,Condition的await/signal 2. CountDownLatch,统一控制多线程开始和结束 3.原子操作,AtomicXXX 4.线程池

    阿里Java并发程序设计教程

    7、并发流程控制手段:CountDownlatch、Barrier 8、定时器: ScheduledExecutorService、大规模定时器TimerWheel 9、并发三大定律:Amdahl、Gustafson、Sun-Ni 10、神人和图书、相关网络资源 11、业界发展情况: GPGPU...

    Java编程并发程序设计

    7、并发流程控制手段:CountDownlatch、Barrier 8、定时器: ScheduledExecutorService、大规模定时器TimerWheel 9、并发三大定律:Amdahl、Gustafson、Sun-Ni 10、神人和图书 11、业界发展情况: GPGPU、OpenCL 12、...

    Java并发编程原理与实战

    并发工具类CountDownLatch详解.mp4 并发工具类CyclicBarrier 详解.mp4 并发工具类Semaphore详解.mp4 并发工具类Exchanger详解.mp4 CountDownLatch,CyclicBarrier,Semaphore源码解析.mp4 提前完成任务之FutureTask...

    CountDownLatch练习

    目录 CountDownLatch是什么? CountDownLatch如何工作? 在实时系统中的应用场景 应用范例 常见的面试题 代码样例

Global site tag (gtag.js) - Google Analytics