`

经典线程同步 关键段CS

 
阅读更多

本文参考http://blog.csdn.net/morewindows/article/details/7442639

 

关键段CRITICAL_SECTION一共就四个函数,使用很是方便。下面是这四个函数的原型和使用说明。

 

函数功能:初始化

函数原型:

void InitializeCriticalSection(LPCRITICAL_SECTION lpCriticalSection);

函数说明:定义关键段变量后必须先初始化。

 

函数功能:销毁

函数原型:

void DeleteCriticalSection(LPCRITICAL_SECTIONlpCriticalSection);

函数说明:用完之后记得销毁。

 

函数功能:进入关键区域

函数原型:

void EnterCriticalSection(LPCRITICAL_SECTION lpCriticalSection);

函数说明:系统保证各线程互斥的进入关键区域。

 

函数功能:离开关关键区域

函数原型:

void LeaveCriticalSection(LPCRITICAL_SECTION lpCriticalSection);

 

然后在经典多线程问题中设置二个关键区域。一个是主线程在递增子线程序号时,另一个是各子线程互斥的访问输出全局资源时。代码如下:

 

#include <windows.h>
#include <process.h>
#include <iostream>

using namespace std;

const int THREADNUM = 30;
volatile long number = 0;

CRITICAL_SECTION threadPM,threadCode;

unsigned int __stdcall threadFunc(PVOID pM) {
        int nThreadNum = *(int *)pPM;
	LeaveCriticalSection(&threadPM);
	Sleep(100);
	EnterCriticalSection(&threadCode);
	cout << nThreadNum  << endl;
	number++;
	Sleep(0);
	LeaveCriticalSection(&threadCode);
	return 0;
}

int main() {
	int num = 20;
	
	HANDLE handle[THREADNUM];

	InitializeCriticalSection(&threadCode);
	InitializeCriticalSection(&threadPM);

	number = 0;
	for(int i=0; i< THREADNUM; i++) {
		EnterCriticalSection(&threadPM);
		handle[i] = (HANDLE)_beginthreadex(NULL, 0, threadFunc, (PVOID) &i, 0, NULL);
	}
	
	WaitForMultipleObjects(THREADNUM, handle, TRUE ,INFINITE); //安全数量为64
	Sleep(500);
	cout << "计数个数为" << number << endl;
	
	DeleteCriticalSection(&threadCode);
	DeleteCriticalSection(&threadPM);
	getchar();
	return 0;
}

 

 

输出结果为:



我们发现,各个子线程之间已经可以互斥的访问全局变量了,但是主线程和子线程之间的同步关系出现了问题

 

       这是为什么呢?

要解开这个迷,最直接的方法就是先在程序中加上断点来查看程序的运行流程。断点处置示意如下:

 


 

 

然后按F5进行调试,正常来说这两个断点应该是依次轮流执行,但实际调试时却发现不是如此,主线程可以多次通过第一个断点即

       EnterCriticalSection(&g_csThreadParameter);//进入子线程序号关键区域

这一语句。这说明主线程能多次进入这个关键区域!

 

 

关键段的本质是保证线程之间的互斥访问,对于同步访问是不能用关键段的。

 

 

先找到关键段CRITICAL_SECTION的定义吧,它在WinBase.h中被定义成RTL_CRITICAL_SECTION。而RTL_CRITICAL_SECTION在WinNT.h中声明,它其实是个结构体:

typedef struct _RTL_CRITICAL_SECTION {

    PRTL_CRITICAL_SECTION_DEBUGDebugInfo;

    LONGLockCount;

    LONGRecursionCount;

    HANDLEOwningThread; // from the thread's ClientId->UniqueThread

    HANDLELockSemaphore;

    DWORDSpinCount;

} RTL_CRITICAL_SECTION, *PRTL_CRITICAL_SECTION;

各个参数的解释如下:

第一个参数:PRTL_CRITICAL_SECTION_DEBUGDebugInfo;

调试用的。

 

第二个参数:LONGLockCount;

初始化为-1,n表示有n个线程在等待。

 

第三个参数:LONGRecursionCount;  

表示该关键段的拥有线程对此资源获得关键段次数,初为0。

 

第四个参数:HANDLEOwningThread;  

即拥有该关键段的线程句柄,微软对其注释为——from the thread's ClientId->UniqueThread

 

第五个参数:HANDLELockSemaphore;

实际上是一个自复位事件。

 

第六个参数:DWORDSpinCount;    

旋转锁的设置,单CPU下忽略

 

 

 

由这个结构可以知道关键段会记录拥有该关键段的线程句柄即关键段是有“线程所有权”概念的。事实上它会用第四个参数OwningThread来记录获准进入关键区域的线程句柄,如果这个线程再次进入,EnterCriticalSection()会更新第三个参数RecursionCount以记录该线程进入的次数并立即返回让该线程进入。

即同一个线程可以重复进入,而其他线程必须等到关键区全部释放后才能轮到自己执行。

其它线程调用EnterCriticalSection()则会被切换到等待状态,一旦拥有线程所有权的线程调用LeaveCriticalSection()使其进入的次数为0时,系统会自动更新关键段并将等待中的线程换回可调度状态。

因此可以将关键段比作旅馆的房卡,调用EnterCriticalSection()即申请房卡,得到房卡后自己当然是可以多次进出房间的,在你调用LeaveCriticalSection()交出房卡之前,别人自然是无法进入该房间。

回到这个经典线程同步问题上,主线程正是由于拥有“线程所有权”即房卡,所以它可以重复进入关键代码区域从而导致子线程在接收参数之前主线程就已经修改了这个参数。所以关键段可以用于线程间的互斥,但不可以用于同步。

 

 

 

另外,由于将线程切换到等待状态的开销较大,因此为了提高关键段的性能,Microsoft将旋转锁合并到关键段中,这样EnterCriticalSection()会先用一个旋转锁不断循环,尝试一段时间才会将线程切换到等待状态。下面是配合了旋转锁的关键段初始化函数

函数功能:初始化关键段并设置旋转次数

函数原型:

BOOLInitializeCriticalSectionAndSpinCount(

  LPCRITICAL_SECTION lpCriticalSection,

  DWORD dwSpinCount);

函数说明:旋转次数一般设置为4000。

 

函数功能:修改关键段的旋转次数

函数原型:

DWORDSetCriticalSectionSpinCount(

  LPCRITICAL_SECTION lpCriticalSection,

  DWORD dwSpinCount);

 

《Windows核心编程》第五版的第八章推荐在使用关键段的时候同时使用旋转锁,这样有助于提高性能。

值得注意的是如果主机只有一个处理器,那么设置旋转锁是无效的。如果在单线程的机器上调用这个函数,那么函数会忽略dwSpinCount参数,因此次数总是为0。因为在单处理器的机器上设置循环次数毫无用处:如果一个线程正在循环,那么占用资源的线程将没有机会放弃对资源的访问权限。

难点在于如何确定传给dwSpinCount参数的值。为了得到最佳的性能,最简单的方法就是尝试各种数值,直到对性能感到满意为止。用来保护进程堆的关键段所使用的旋转次数大约是4000,这可以作为我们的一个参考值。旋转锁的原理和定义请参考《旋转锁的解释

 

无法进入关键区域的线程总会被系统将其切换到等待状态。

 

最后总结下关键段:

1.关键段共初始化化、销毁、进入和离开关键区域四个函数。

2.关键段可以解决线程的互斥问题,但因为具有“线程所有权”,所以无法解决同步问题。

3.推荐关键段与旋转锁配合使用。

 

  • 大小: 16.2 KB
  • 大小: 13.4 KB
分享到:
评论

相关推荐

    Delphi多线程编程之三 同步读写全局数据

    互斥非常类似于临界区,除了两个关键的区别:首先,互斥可用于跨进程的线程同步。其次,互斥能被赋予一个字符串名字,并且通过引用此名字创建现有互斥对象的附加句柄。 提示临界区与事件对象(比如互斥对象)的最大的...

    在同步代码结束后,使用ReleaseMutex(THandle

    互斥非常类似于临界区,除了两个关键的区别:首先,互斥可用于跨进程的线程同步。其次,互斥能被赋予一个字符串名字,并且通过引用此名字创建现有互斥对象的附加句柄。 提示临界区与事件对象(比如互斥对象)的最大的...

    java 面试题 总结

    最大的不同是,Hashtable的方法是Synchronize的,而HashMap不是,在多个线程访问Hashtable时,不需要自己为它的方法实现同步,而HashMap 就必须为之提供外同步。 Hashtable和HashMap采用的hash/rehash算法都大概...

    超级有影响力霸气的Java面试题大全文档

    最大的不同是,Hashtable的方法是Synchronize的,而HashMap不是,在多个线程访问Hashtable时,不需要自己为它的方法实现同步,而HashMap 就必须为之提供外同步。 Hashtable和HashMap采用的hash/rehash算法都大概...

    千方百计笔试题大全

    231、Java语言的11个关键特性. 54 232、说出Servlet的生命周期,并说出Servlet和CGI的区别。 55 233、说出在JSP页面里是怎么分页的? 55 234、存储过程和函数的区别 55 235、事务是什么? 55 236、游标的作用?如何...

    java面试宝典

    231、Java语言的11个关键特性. 54 232、说出Servlet的生命周期,并说出Servlet和CGI的区别。 55 233、说出在JSP页面里是怎么分页的? 55 234、存储过程和函数的区别 55 235、事务是什么? 55 236、游标的作用?如何...

    vc++ 开发实例源码包

    CCAMS系统是一种用于局域网下的CS模式的软件管理和监测系统源码 它包括客户端和服务端,客户端软件主要作用是监测本主机的活动,并将监测到的信息定时发送给服务器。服务器可以将收集到的信息以柱状图和文件列表以及...

    vc++ 应用源码包_1

    内部包含:mp3播放器Lrc歌词同步源程序代码分析、mp3播放器+支持歌词同步显示哦、简单音乐播放器。 mfc 解码 视频音频解码部分。 MFC_MultiSender_OVER 文件传送,多文件(超大文件)传送功能的实现,含文档。 ...

    vc++ 应用源码包_2

    内部包含:mp3播放器Lrc歌词同步源程序代码分析、mp3播放器+支持歌词同步显示哦、简单音乐播放器。 mfc 解码 视频音频解码部分。 MFC_MultiSender_OVER 文件传送,多文件(超大文件)传送功能的实现,含文档。 ...

    vc++ 应用源码包_6

    内部包含:mp3播放器Lrc歌词同步源程序代码分析、mp3播放器+支持歌词同步显示哦、简单音乐播放器。 mfc 解码 视频音频解码部分。 MFC_MultiSender_OVER 文件传送,多文件(超大文件)传送功能的实现,含文档。 ...

    vc++ 应用源码包_5

    内部包含:mp3播放器Lrc歌词同步源程序代码分析、mp3播放器+支持歌词同步显示哦、简单音乐播放器。 mfc 解码 视频音频解码部分。 MFC_MultiSender_OVER 文件传送,多文件(超大文件)传送功能的实现,含文档。 ...

    vc++ 应用源码包_3

    内部包含:mp3播放器Lrc歌词同步源程序代码分析、mp3播放器+支持歌词同步显示哦、简单音乐播放器。 mfc 解码 视频音频解码部分。 MFC_MultiSender_OVER 文件传送,多文件(超大文件)传送功能的实现,含文档。 ...

    JAVA上百实例源码以及开源项目

     这是个J2ME控制台程序,它能剔除PNG文件中的非关键数据段,减少文件大小从而达到压缩图片的目的。而图片的质量并不会受到损失。使用时候只需在控制台窗口执行jar就可以了。 Java 3DMenu 界面源码 5个目标文件 ...

    JAVA上百实例源码以及开源项目源代码

     这是个J2ME控制台程序,它能剔除PNG文件中的非关键数据段,减少文件大小从而达到压缩图片的目的。而图片的质量并不会受到损失。使用时候只需在控制台窗口执行jar就可以了。 Java 3DMenu 界面源码 5个目标文件 ...

    (重要)AIX command 使用总结.txt

    AIX常用命令://查看机器序列号,IBM的基本信息都可以通过该命令查询得到 #prtconf #oslevel -r == uname -a //操作系统版本 #oslevel //查看操作系统版本ex :5.1.0.0 #oslevel -r //ex:5100-04 == oslevel -q ...

    海康视频卡动态库

    using System; using System.Collections.Generic; using System.Text; using System.ComponentModel; using System.Data; using System.Drawing;...using System.Windows.Forms;...using System.Runtime.InteropServices;...

Global site tag (gtag.js) - Google Analytics