- 浏览: 1223343 次
文章分类
最新评论
-
netkongjian:
不错的界面控件知识,感谢分享!
BCG界面库使用指南 -
netkongjian:
不错的界面控件知识,感谢分享!
MFC UI界面库 -
isaiahzhong:
queryforlist这个方法是可以解决,不 ...
spring JdbcTemplate的queryForObject为空返回异常情况的一个处理 -
jcs130:
请问我现在的板子是BeagleboardC4的,3530的芯片 ...
在BeagleBoard上运行QNX系统(总结) -
a13786733193:
你好!你写的DEMO程序很有逻辑,我最近也在做些自定义控件,但 ...
C# 自定义控件
DNS协议解析
DNS 的来由
如果您为您的机器设定过 internet 连线﹐那么您一定接触过 DNS 了﹐但 DNS 又是什么东东呢﹖说穿了﹐DNS 是用来帮助记忆网路位址的﹐完全是为了迁就人类的记忆思维而设的。
DNS 的全称是 Domain Name System(或 Service) ﹐当您连上一个网址﹐在URL打上﹕www.google.com 的时候﹐可以说就是使用了 DNS 的服务了。但如果您知道这个 www.google.com 的 IP 位址﹐直接输入 216.239.53.101 也同样可以到达这个网址。其实﹐电脑使用的只是 IP 位址而已(最终也是 0 和 1 啦)﹐这个 www.google.com 只是让人们容易记忆而设的。因为我们人类﹐对一些比较有意义的文字记忆(如﹕www.google.com)﹐比记忆那些毫无头绪的号码(如﹕216.239.53.101)﹐往往容易得多。DNS 的作用就是为我们在文字和 IP 之间担当了翻译﹐而免除了强记号码的痛苦。
假如您的电话有名字记忆功能﹐您只需知道对方的名字﹐就可以拨号给友人了﹐我们可以说﹐这电话也具备如 DNS 的功能了呢﹗但是﹐我们在网路中使用的 DNS 系统﹐就是这么简单吗﹖非也﹐复杂得很呢﹗下面﹐就让我们一起去探索一下 DNS 的奥秘﹕
在早期的 IP 网路世界里面﹐每台电脑都只用 IP 位址来表示﹐不久人们就发现这样很难记忆﹐于是﹐一些 UNIX 的管理者﹐就建立一个 HOSTS 对应表﹐将 IP 和主机名字对应起来﹐这样﹐用户只需输入电脑名字﹐就可以代替 IP 来进行沟通了。如果你安装了 Linux 系统﹐在 /etc 下面就可以找到这个 hosts 档案﹔在 NT 的系统里﹐你也可以在 \winnt\system32\drivers\etc 下面找到它。不过这个 HOSTS 档是要由管理者手工维护的﹐最大的问题是无法适用于大型网路﹐而且更新也是件非常头痛的事情。这就是 DNS 大派用场的时候了。
DNS 的结构
DNS 是一个分层级的分散式名称对应系统﹐有点像电脑的目录树结构﹕在最顶端的是一个“root”﹐然后其下分为好几个基本类别名称﹐如﹕com﹑org﹑edu 等﹔再下面是组织名称﹐如﹕ibm﹑microsoft﹑intel 等﹔继而是主机名称﹐如﹕www﹑mail﹑ftp 等。因为当初 internet 是从美国发展起的﹐所以当时并没有国域名称﹐但随着后来 internet 的蓬勃发展﹐DNS 也加进了诸如 tw﹑hk﹑cn 等国域名称。所以一个完整的 dns 名称就好象是这样的﹕www.xyz.com.tw﹐而整个名称对应的就是一个(或多个) IP 位址了。
在早期的设计下﹐root 下面只有六个组织类别﹕
不过﹐自从组织类别名称开放以后﹐各种各样五花八门的名称也相继涌现出来了﹐但无论如何﹐取名的规则最好尽量适合网站性质。除了原来的类别资料由美国本土的 NIC(Network Information Center) 管理之外﹐其它在国域以下的类别分别由该国的 NIC 管理(比方说台湾的 DNS 将授权给 twnic 来管理)。这样的结构看起来就像这样﹕
在结构中﹐各组织的 DNS 经过申请后由该组织或其委托主机管理(通常当您申请注册一个 domain 域名称的时候﹐都要指定两台 DNS 主机负责该域名的 DNS 管理)。
DNS 的运作
在我们设定 IP 网路环境的时候﹐都要告诉每台主机关于 DNS 伺服器的位址(我们可以手动的在每一台主机上面设置﹐也可以使用 DHCP 来指定)。但这设定的义意何在呢?从前面的介绍我们或可知道:其目的就是请 DNS 帮忙解析主机名称与 IP 位址啦。在这个设定过程中,DNS 被称为 resolver (也就是负责解析的 DNS Server),而被设定主机,则只是单纯的 DNS Client 了,也就是提出解析请求的主机。
下面让我们看看 DNS 是怎样运作的﹕
1. 当被询问到有关本域名之内的主机名称的时候﹐DNS 伺服器会直接做出回答﹔
2. 客户端向伺服器提出查询项目﹔
3. 当被询问到有关本域名之内的主机名称的时候﹐DNS 伺服器会直接做出回答﹔
4. 如果所查询的主机名称属于其它域名的话﹐会检查快取记忆体(Cache)﹐看看有没有相关资料﹔
5. 如果没有发现﹐则会转向 root 伺服器查询﹔
6. 然后 root 伺服器会将该域名之下一层授权(authoritative)伺服器的位址告知(可能会超过一台)﹔
7. 本地伺服器然后会向其中的一台伺服器查询﹐并将这些伺服器名单存到记忆体中﹐以备将来之需(省却再向 root 查询的步骤)﹔
8. 远方伺服器回应查询﹔
9. 若该回应并非最后一层的答案,则继续往下一层查询,直到获的客户端所查询的结果为止﹔
10. 将查询结果回应给客户端﹐并同时将结果储存一个备份在自己的快取记忆里面﹔
11. 如果在存放时间尚未过时之前再接到相同的查询﹐则以存放于快取记忆里面的资料来做回应。
从这个过程我们可以看出﹐没有任何一台 DNS 主机会包含所有域名的 DNS 资料﹐资料都是分散在全部的 DNS 伺服器中﹐而 NIC 只需知道各 DNS 伺服器位址就可以了。
为了更好地理解一下 DNS 的运作﹐让我们用下图看看查询 www.home.netman.com.tw 这台主机位址的过程﹕
在这个例子中﹐www.home.netman.com.tw 台主机的 DNS 对应资料﹐是由负责 home.netman.com.tw 这个域名的 DNS 伺服器管理的。(在 DNS 术语中﹐我们称一个域名为“zone”﹐这个 zone 可以是您从 NIC 申请回来的域名﹐也可以是从该域名之下延伸出来的“sub-zone”)。在这台 DNS 伺服器上面﹐必须有一个关于 home.netman.com.tw 这个 zone 的档案﹐而这档案里面必须有一笔关于 www 的记录(任何主机都是以“记录”来表示,称为 Resource Record)。这个记录可以为一个 IP 位址﹐也可以以别名形式来对应一台主机名称﹐但无论如何﹐所对应的主机名称最终是要被一个 IP 位址所对应着就是了。
同时﹐DNS 还能提供“反查询”(reverse lookup) 功能﹐也就是以 IP 来查询主机名称。网路上面的许多服务﹐如﹕FTP, SMTP﹑等等﹐都需要到这个功能。其实﹐DNS 服务本身就必须要使用反查询功能﹐而且在设定上﹐也必须要为每个网路建立起 reverse zone。虽然有些人发觉即使没有 reverse zone 也可以使用到 DNS 服务﹐但其中弊端却不容易被察觉到﹐在这个(中文)网页﹕http://dnsrd.nctu.edu.tw/Basic/WhenToUse-Rev.html 上面﹐您可以看到忽略 revers zone 所致一些问题。
DNS 的名称记录
事实上﹐DNS 不仅仅是用来解释位址用的﹐而且还可以回答更多关于网路和主机的其它信息﹐其中很重要的一个功能就是可以供邮件系统进行路由。这些资料﹐通常会以不同的“记录”名称出现在DNS的资料档案中。下面让我们参考一个 Linux 的 DNS 档案﹐看看这些记录是如何表示的﹕
;
; Zone file for siyongc.domain
;
; Then full zone file
;
$TTL 86400
@ IN SOA redhat52.siyongc.domain. netman.siyongc.domain. (
1999092801 ; serial
8H ; refresh
2H ; retry
1W ; expire
1D ) ; minimun
;
IN TXT "A test domain, created by Netman"
IN NS redhat52
IN NS debian.home
IN MX 10 redhat52.siyongc.domain.
IN MX 20 debian.home
;
localhost IN A 127.0.0.1
﹔
gw IN A 192.168.0.17
IN HINFO "Redhat" "MASQ"
IN TXT "The masquerade gateway to internet"
﹔
redhat52 IN A 192.168.0.17
IN MX 10 redhat52
IN MX 20 debian.home
IN HINFO "Dell PII 266" "Linux RedHat"
www IN CNAME redhat52
mail IN CNAME redhat52
ftp IN CNAME redhat52
news IN CNAME redhat52
smtp IN CNAME redhat52
﹔
pii266 IN A 192.168.0.15
IN MX 10 redhat52.siyongc.domain.
IN MX 20 debian.home.
﹔
slware36 IN A 192.168.0.18
IN MX 10 redhat52.siyongc.domain.
IN MX 20 debian.home.
﹔
rhroute IN A 192.168.0.4
IN MX 10 redhat52.siyongc.domain.
IN MX 20 debian.home.
﹔
home IN ns debian.home.siyongc.domain.
debian.home IN A 10.0.2.101
我们姑且不理会开头那几行的意思﹐那是给 DNS 系统本身使用的(我将会在“学习 Linux”文章里面再详细讨论)﹐这里我们只是看看几个记录名称而已﹕
分擔 DNS 工作
由於 DNS 的重要性日益顯著,為提高其容錯能力及查詢效能,我們在架設某一單一 zone 的時侯,常以多台伺服器來負責該 zone 的服務。其中,我們必需指定一台 Primary(master) DNS 伺服器,它是架設在某一個網域下被主要授權並控制所有名稱記錄的主控伺服器﹐管轄著該網域的所有記錄資料﹐這些記錄資料只有 primary(master) 可以修改。
但如果在一個比較大型的網路中﹐DNS 伺服器就會變得很繁忙﹐所以您可以設定多個 DNS 來分擔 master 的工作﹐但您或許不願意到每一個 DNS 伺服器去更新資料吧﹖而且就算您願意這樣做﹐也容易出現錯誤或資料不同步的情形。這樣您可以設定其它的伺服器為 secondary (slave) DNS 來複製 master 上面的記錄資料﹐這樣﹐其它的電腦可以被分派到不同的 DNS 做查詢﹐既可以分擔 master 的工作﹐而且資料也可以自動進行同步工作。為確保資料的一致性,master 每次更新過資料後會以 notify 機制主動通知 slave 前來同步。此外,您可以設定 DNS 資料同步的時間間隔﹐在 dns 檔案中的 Refresh 設定就是了。
网络基础 02 DNS 协议
一、域名和资源记录的定义
1、Name space definitions
2、资源记录定义(RR definitions)
2.1 格式
后面分析报文的时候详细解释。
2.2 类型值(TYPE values)
类型主要用在资源记录中,注意下面的值是QTYPE的一个子集。
类型 值和含义
A 1 a host address
NS 2 an authoritative name server
MD 3 a mail destination (Obsolete - use MX)
MF 4 a mail forwarder (Obsolete - use MX)
CNAME 5 the canonical name for an alias
SOA 6 marks the start of a zone of authority
MB 7 a mailbox domain name (EXPERIMENTAL)
MG 8 a mail group member (EXPERIMENTAL)
MR 9 a mail rename domain name (EXPERIMENTAL)
NULL 10 a null RR (EXPERIMENTAL)
WKS 11 a well known service description
PTR 12 a domain name pointer
HINFO 13 host information
MINFO 14 mailbox or mail list information
MX 15 mail exchange
TXT 16 text strings
2.3 查询类型(QTYPE values)
查询类型出现在问题字段中,查询类型是类型的一个超集,所有的类型都是可用的查询类型,其他查询类型如下:
AXFR 252 A request for a transfer of an entire zone
MAILB 253 A request for mailbox-related records (MB, MG or MR)
MAILA 254 A request for mail agent RRs (Obsolete - see MX)
* 255 A request for all records
2.4 类(CLASS values)
IN 1 the Internet
CS 2 the CSNET class (Obsolete - used only for examples in some obsolete RFCs)
CH 3 the CHAOS class
HS 4 Hesiod [Dyer 87]
2.5 查询类(QCLASS values)
查询类是类的一个超集
* 255 any class
3、Standard RRs
3.1 CNAME RDATA format
3.2 HINFO RDATA format
3.3 MB RDATA format (EXPERIMENTAL)
3.4 MD RDATA format (Obsolete)
3.5 MF RDATA format (Obsolete)
3.6 MG RDATA format (EXPERIMENTAL)
3.7 MINFO RDATA format (EXPERIMENTAL)
3.8 MR RDATA format (EXPERIMENTAL)
3.9 MX RDATA format
3.10 NULL RDATA format (EXPERIMENTAL)
3.11 NS RDATA format
3.12 PTR RDATA format
3.13 SOA RDATA format
3.14 TXT RDATA format
4、ARPA Internet specific RRs
4.1 A RDATA format
4.2 WKS RDATA format
5、IN-ADDR.ARPA domain
6、Defining new types, classes, and special namespaces
二、报文
1、报文格式(Format)
dns请求和应答都是用相同的报文格式,分成5个段(有的报文段在不同的情况下可能为空),如下:
+---------------------+
| Header | 报文头
+---------------------+
| Question | 查询的问题
+---------------------+
| Answer | 应答
+---------------------+
| Authority | 授权应答
+---------------------+
| Additional | 附加信息
+---------------------+
Header段是必须存在的,它定义了报文是请求还是应答,也定义了其他段是否需要存在,以及是标准查询还是其他。
Question段描述了查询的问题,包括查询类型(QTYPE),查询类(QCLASS),以及查询的域名(QNAME)。剩下的3个段包含相同的格式:一系列可能为空的资源记录(RRs)。Answer段包含回答问题的RRs;授权段包含授权域名服务器的RRs;附加段包含和请求相关的,但是不是必须回答的RRs。
1.1 Header的格式
报文头包含如下字段:
1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| ID |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
|QR| Opcode |AA|TC|RD|RA| Z | RCODE |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| QDCOUNT |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| ANCOUNT |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| NSCOUNT |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| ARCOUNT |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
各字段分别解释如下:
ID 请求客户端设置的16位标示,服务器给出应答的时候会带相同的标示字段回来,这样请求客户端就可以区分不同的请求应答了。
QR 1个比特位用来区分是请求(0)还是应答(1)。
OPCODE 4个比特位用来设置查询的种类,应答的时候会带相同值,可用的值如下:
0 标准查询 (QUERY)
1 反向查询 (IQUERY)
2 服务器状态查询 (STATUS)
3-15 保留值,暂时未使用
AA 授权应答(Authoritative Answer) - 这个比特位在应答的时候才有意义,指出给出应答的服务器是查询域名的授权解析服务器。
注意因为别名的存在,应答可能存在多个主域名,这个AA位对应请求名,或者应答中的第一个主域名。
TC 截断(TrunCation) - 用来指出报文比允许的长度还要长,导致被截断。
RD 期望递归(Recursion Desired) - 这个比特位被请求设置,应答的时候使用的相同的值返回。如果设置了RD,就建议域名服务器进行递归解析,递归查询的支持是可选的。
RA 支持递归(Recursion Available) - 这个比特位在应答中设置或取消,用来代表服务器是否支持递归查询。
Z 保留值,暂时未使用。在所有的请求和应答报文中必须置为0。
RCODE 应答码(Response code) - 这4个比特位在应答报文中设置,代表的含义如下:
0 没有错误。
1 报文格式错误(Format error) - 服务器不能理解请求的报文。
2 服务器失败(Server failure) - 因为服务器的原因导致没办法处理这个请求。
3 名字错误(Name Error) - 只有对授权域名解析服务器有意义,指出解析的域名不存在。
4 没有实现(Not Implemented) - 域名服务器不支持查询类型。
5 拒绝(Refused) - 服务器由于设置的策略拒绝给出应答。比如,服务器不希望对某些请求者给出应答,或者服务器不希望进行某些操作(比如区域传送zone transfer)。
6-15 保留值,暂时未使用。
QDCOUNT 无符号16位整数表示报文请求段中的问题记录数。
ANCOUNT 无符号16位整数表示报文回答段中的回答记录数。
NSCOUNT 无符号16位整数表示报文授权段中的授权记录数。
ARCOUNT 无符号16位整数表示报文附加段中的附加记录数。
1.2 Question的格式
在大多数查询中,Question段包含着问题(question),比如,指定问什么。这个段包含QDCOUNT(usually 1)个问题,每个问题为下面的格式:
1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| |
/ QNAME /
/ /
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| QTYPE |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| QCLASS |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
字段含义如下
QNAME 域名被编码为一些labels序列,每个labels包含一个字节表示后续字符串长度,以及这个字符串,以0长度和空字符串来表示域名结束。注意这个字段可能为奇数字节,不需要进行边界填充对齐。
QTYPE 2个字节表示查询类型,.取值可以为任何可用的类型值,以及通配码来表示所有的资源记录。
QCLASS 2个字节表示查询的协议类,比如,IN代表Internet。
1.3 资源记录格式(Resource record)
应答,授权,附加段都共用相同的格式:多个资源记录,资源记录的个数由报文头段中对应的几个数值确定,每个资源记录格式如下:
1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| |
/ /
/ NAME /
| |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| TYPE |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| CLASS |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| TTL |
| |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| RDLENGTH |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
/ RDATA /
/ /
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
各字段含义如下:
NAME 资源记录包含的域名
TYPE 2个字节表示资源记录的类型,指出RDATA数据的含义
CLASS 2个字节表示RDATA的类
TTL 4字节无符号整数表示资源记录可以缓存的时间。0代表只能被传输,但是不能被缓存。
RDLENGTH 2个字节无符号整数表示RDATA的长度
RDATA 不定长字符串来表示记录,格式根TYPE和CLASS有关。比如,TYPE是A,CLASS 是 IN,那么RDATA就是一个4个字节的ARPA网络地址。
1.4 报文压缩
为了减小报文,域名系统使用一种压缩方法来消除报文中域名的重复。使用这种方法,后面重复出现的域名或者labels被替换为指向之前出现位置的指针。
指针占用2个字节,格式如下:
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| 1 1| OFFSET |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
前两个比特位都为1。因为lablels限制为不多于63个字节,所以label的前两位一定为0,这样就可以让指针与label进行区分。(10 和 01 组合保留,以便日后使用) 。偏移值(OFFSET)表示从报文开始的字节指针。偏移量为0表示ID字段的第一个字节。
压缩方法让报文中的域名成为:
- 以0结尾的labels序列
- 一个指针
- 指针结尾的labels序列
指针只能在域名不是特殊格式的时候使用,否则域名服务器或解析器需要知道资源记录的格式。目前还没有这种情况,但是以后可能会出现。
如果报文中的域名需要计算长度,并且使用了压缩算法,那么应该使用压缩后的长度,而不是压缩前的长度。
程序可以自由选择是否使用指针,虽然这回降低报文的容量,而且很容易产生截断。不过所有的程序都应该能够理解收到的报文中包含的指针。
比如,一个报文需要使用域名F.ISI.ARPA,FOO.F.ISI.ARPA,ARPA,以及根。忽略报文中的其他字段,应该编码为:
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
20 | 1 | F |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
22 | 3 | I |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
24 | S | I |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
26 | 4 | A |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
28 | R | P |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
30 | A | 0 |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
40 | 3 | F |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
42 | O | O |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
44 | 1 1| 20 |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
64 | 1 1| 26 |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
92 | 0 | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
偏移20的是域名F.ISI.ARPA。域名FOO.F.ISI.ARPA偏移40; 这样表示FOO的label后面跟着一个指向之前F.ISI.ARPA的指针。域名ARPA偏移64,使用一个指针指向F.ISI.ARPA的ARPA。注意可以用这个指针是因为ARPA是从偏移位置20开始的labels序列中的最后一个label。根域名在位置92定义为一个0,没有labels。
2、传输(Transport)
DNS假设报文以数据报,或者从虚链路上以字节流进行传输。虚链路可以用来任何的DNS的传输,数据报可以减少代价提高传输性能。区域刷新必须使用虚链路,因为需要一个可靠的传输。
因特网中DNS支持端口53的TCP[RFC-793]和端口53的UDP [RFC-768]传输。
2.1 使用UDP
消息通过UDP的53端口进行传输。
UDP传输的消息严格要求限制在512字节内(不包括IP和UDP头)。长报文被截断,同时置报文头的TC标志位。
UDP不能用于区域传输,主要用在标准的域名查询。报文通过UDP可能会丢失,所以重传机制是需要的,请求和应答可能在网络中或者服务器处理的时候被重新排序,所以解析客户端不能依赖请求的发送顺序。
UDP的最优重传策略会因为网络的性能,客户的需要而不同,但是下面是推荐的:
- 客户端在对一台固定的服务器重试之前,尝试一下其他的服务器。
- 如果可能的话,重传的时间间隔需要建立在统计分析数据的基础上,太快的重试可能因为量太大导致服务器响应慢。建议的重试时间为2-5秒。
2.2 使用TCP
通过TCP发送的报文使用53端口,报文的前面有个字节表示后面报文的长度,长度不包括自己占用的2个字节,这个长度使得底层收取完整的报文后在交给上层处理。
很多连接管理策略如下:
- 服务器不能阻塞其他传输TCP数据的请求。
- 服务器需要支持多连接
- 服务器要等客户端主动关闭连接,除非所有的数据都已经传输完了。
- 如果服务器想关闭没有通讯的连接来释放资源,那么需要等待大约2分钟的时间。特别是要等SOA和AXFR(刷新操作中)在一个连接上传输完。服务器关闭连接的时候可以单方面的关闭,或者直接reset掉连接。
三、实例
1、请求解析www.baidu.com.
在linux下使用tcpdump port 53抓包,同时使用dig进行解析测试,得到结果如下:
; (1 server found)
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 1169
;; flags: qr rd ra; QUERY: 1, ANSWER: 3, AUTHORITY: 4, ADDITIONAL: 0
;; QUESTION SECTION:
;www.baidu.com. IN A
;; ANSWER SECTION:
www.baidu.com. 1200 IN CNAME www.a.shifen.com.
www.a.shifen.com. 600 IN A 121.14.88.76
www.a.shifen.com. 600 IN A 121.14.89.10
;; AUTHORITY SECTION:
a.shifen.com. 86411 IN NS ns5.a.shifen.com.
a.shifen.com. 86411 IN NS ns6.a.shifen.com.
a.shifen.com. 86411 IN NS ns1.a.shifen.com.
a.shifen.com. 86411 IN NS ns3.a.shifen.com.
1.1 请求报文
0x0000: 4500 003b f8cf 0000 4011 f9ae xxxx xxxx E..;....@......r
0x0010: xxxx xxxx 92b8 0035 0027 23ed 0491 0100 ...q...5.'#.....
0x0020: 0001 0000 0000 0000 0377 7777 0562 6169 .........www.bai
0x0030: 6475 0363 6f6d 0000 0100 01 du.com.....
0491:报文ID,也就是十进制的1169
0100:标志,置了RD字段,也就是期望递归的请求
0001 0000 0000 0000:分别为问题数,应答数,授权记录数,附加记录数,也就是1个问题
0377 7777 0562 6169 6475 0363 6f6d 00:也就是www.baidu.com的编码
00 0100 01:查询类型和查询类都为1,也就是internet的A记录查询
1.2 应答报文
0x0000: 4500 00be 0016 4000 4011 b1e5 xxxx xxxx E.....@.@......q
0x0010: xxxx xxxx 0035 92b8 00aa 33e1 0491 8180 ...r.5....3.....
0x0020: 0001 0003 0004 0000 0377 7777 0562 6169 .........www.bai
0x0030: 6475 0363 6f6d 0000 0100 01c0 0c00 0500 du.com..........
0x0040: 0100 0004 b000 0f03 7777 7701 6106 7368 ........www.a.sh
0x0050: 6966 656e c016 c02b 0001 0001 0000 0258 ifen...+.......X
0x0060: 0004 790e 584c c02b 0001 0001 0000 0258 ..y.XL.+.......X
0x0070: 0004 790e 590a c02f 0002 0001 0001 518b ..y.Y../......Q.
0x0080: 0006 036e 7335 c02f c02f 0002 0001 0001 ...ns5././......
0x0090: 518b 0006 036e 7336 c02f c02f 0002 0001 Q....ns6././....
0x00a0: 0001 518b 0006 036e 7331 c02f c02f 0002 ..Q....ns1././..
0x00b0: 0001 0001 518b 0006 036e 7333 c02f ....Q....ns3./
注意8180,也就是二进制的 1 0000 0 0 1 1 000 0000 ,说明是应答,置了RD和RA位
黄色背景为压缩编码,比如c016就代表第22个字节,也就是com。
如果您为您的机器设定过 internet 连线﹐那么您一定接触过 DNS 了﹐但 DNS 又是什么东东呢﹖说穿了﹐DNS 是用来帮助记忆网路位址的﹐完全是为了迁就人类的记忆思维而设的。
DNS 的全称是 Domain Name System(或 Service) ﹐当您连上一个网址﹐在URL打上﹕www.google.com 的时候﹐可以说就是使用了 DNS 的服务了。但如果您知道这个 www.google.com 的 IP 位址﹐直接输入 216.239.53.101 也同样可以到达这个网址。其实﹐电脑使用的只是 IP 位址而已(最终也是 0 和 1 啦)﹐这个 www.google.com 只是让人们容易记忆而设的。因为我们人类﹐对一些比较有意义的文字记忆(如﹕www.google.com)﹐比记忆那些毫无头绪的号码(如﹕216.239.53.101)﹐往往容易得多。DNS 的作用就是为我们在文字和 IP 之间担当了翻译﹐而免除了强记号码的痛苦。
假如您的电话有名字记忆功能﹐您只需知道对方的名字﹐就可以拨号给友人了﹐我们可以说﹐这电话也具备如 DNS 的功能了呢﹗但是﹐我们在网路中使用的 DNS 系统﹐就是这么简单吗﹖非也﹐复杂得很呢﹗下面﹐就让我们一起去探索一下 DNS 的奥秘﹕
在早期的 IP 网路世界里面﹐每台电脑都只用 IP 位址来表示﹐不久人们就发现这样很难记忆﹐于是﹐一些 UNIX 的管理者﹐就建立一个 HOSTS 对应表﹐将 IP 和主机名字对应起来﹐这样﹐用户只需输入电脑名字﹐就可以代替 IP 来进行沟通了。如果你安装了 Linux 系统﹐在 /etc 下面就可以找到这个 hosts 档案﹔在 NT 的系统里﹐你也可以在 \winnt\system32\drivers\etc 下面找到它。不过这个 HOSTS 档是要由管理者手工维护的﹐最大的问题是无法适用于大型网路﹐而且更新也是件非常头痛的事情。这就是 DNS 大派用场的时候了。
DNS 的结构
DNS 是一个分层级的分散式名称对应系统﹐有点像电脑的目录树结构﹕在最顶端的是一个“root”﹐然后其下分为好几个基本类别名称﹐如﹕com﹑org﹑edu 等﹔再下面是组织名称﹐如﹕ibm﹑microsoft﹑intel 等﹔继而是主机名称﹐如﹕www﹑mail﹑ftp 等。因为当初 internet 是从美国发展起的﹐所以当时并没有国域名称﹐但随着后来 internet 的蓬勃发展﹐DNS 也加进了诸如 tw﹑hk﹑cn 等国域名称。所以一个完整的 dns 名称就好象是这样的﹕www.xyz.com.tw﹐而整个名称对应的就是一个(或多个) IP 位址了。
在早期的设计下﹐root 下面只有六个组织类别﹕
不过﹐自从组织类别名称开放以后﹐各种各样五花八门的名称也相继涌现出来了﹐但无论如何﹐取名的规则最好尽量适合网站性质。除了原来的类别资料由美国本土的 NIC(Network Information Center) 管理之外﹐其它在国域以下的类别分别由该国的 NIC 管理(比方说台湾的 DNS 将授权给 twnic 来管理)。这样的结构看起来就像这样﹕
在结构中﹐各组织的 DNS 经过申请后由该组织或其委托主机管理(通常当您申请注册一个 domain 域名称的时候﹐都要指定两台 DNS 主机负责该域名的 DNS 管理)。
DNS 的运作
在我们设定 IP 网路环境的时候﹐都要告诉每台主机关于 DNS 伺服器的位址(我们可以手动的在每一台主机上面设置﹐也可以使用 DHCP 来指定)。但这设定的义意何在呢?从前面的介绍我们或可知道:其目的就是请 DNS 帮忙解析主机名称与 IP 位址啦。在这个设定过程中,DNS 被称为 resolver (也就是负责解析的 DNS Server),而被设定主机,则只是单纯的 DNS Client 了,也就是提出解析请求的主机。
下面让我们看看 DNS 是怎样运作的﹕
1. 当被询问到有关本域名之内的主机名称的时候﹐DNS 伺服器会直接做出回答﹔
2. 客户端向伺服器提出查询项目﹔
3. 当被询问到有关本域名之内的主机名称的时候﹐DNS 伺服器会直接做出回答﹔
4. 如果所查询的主机名称属于其它域名的话﹐会检查快取记忆体(Cache)﹐看看有没有相关资料﹔
5. 如果没有发现﹐则会转向 root 伺服器查询﹔
6. 然后 root 伺服器会将该域名之下一层授权(authoritative)伺服器的位址告知(可能会超过一台)﹔
7. 本地伺服器然后会向其中的一台伺服器查询﹐并将这些伺服器名单存到记忆体中﹐以备将来之需(省却再向 root 查询的步骤)﹔
8. 远方伺服器回应查询﹔
9. 若该回应并非最后一层的答案,则继续往下一层查询,直到获的客户端所查询的结果为止﹔
10. 将查询结果回应给客户端﹐并同时将结果储存一个备份在自己的快取记忆里面﹔
11. 如果在存放时间尚未过时之前再接到相同的查询﹐则以存放于快取记忆里面的资料来做回应。
从这个过程我们可以看出﹐没有任何一台 DNS 主机会包含所有域名的 DNS 资料﹐资料都是分散在全部的 DNS 伺服器中﹐而 NIC 只需知道各 DNS 伺服器位址就可以了。
为了更好地理解一下 DNS 的运作﹐让我们用下图看看查询 www.home.netman.com.tw 这台主机位址的过程﹕
在这个例子中﹐www.home.netman.com.tw 台主机的 DNS 对应资料﹐是由负责 home.netman.com.tw 这个域名的 DNS 伺服器管理的。(在 DNS 术语中﹐我们称一个域名为“zone”﹐这个 zone 可以是您从 NIC 申请回来的域名﹐也可以是从该域名之下延伸出来的“sub-zone”)。在这台 DNS 伺服器上面﹐必须有一个关于 home.netman.com.tw 这个 zone 的档案﹐而这档案里面必须有一笔关于 www 的记录(任何主机都是以“记录”来表示,称为 Resource Record)。这个记录可以为一个 IP 位址﹐也可以以别名形式来对应一台主机名称﹐但无论如何﹐所对应的主机名称最终是要被一个 IP 位址所对应着就是了。
同时﹐DNS 还能提供“反查询”(reverse lookup) 功能﹐也就是以 IP 来查询主机名称。网路上面的许多服务﹐如﹕FTP, SMTP﹑等等﹐都需要到这个功能。其实﹐DNS 服务本身就必须要使用反查询功能﹐而且在设定上﹐也必须要为每个网路建立起 reverse zone。虽然有些人发觉即使没有 reverse zone 也可以使用到 DNS 服务﹐但其中弊端却不容易被察觉到﹐在这个(中文)网页﹕http://dnsrd.nctu.edu.tw/Basic/WhenToUse-Rev.html 上面﹐您可以看到忽略 revers zone 所致一些问题。
DNS 的名称记录
事实上﹐DNS 不仅仅是用来解释位址用的﹐而且还可以回答更多关于网路和主机的其它信息﹐其中很重要的一个功能就是可以供邮件系统进行路由。这些资料﹐通常会以不同的“记录”名称出现在DNS的资料档案中。下面让我们参考一个 Linux 的 DNS 档案﹐看看这些记录是如何表示的﹕
;
; Zone file for siyongc.domain
;
; Then full zone file
;
$TTL 86400
@ IN SOA redhat52.siyongc.domain. netman.siyongc.domain. (
1999092801 ; serial
8H ; refresh
2H ; retry
1W ; expire
1D ) ; minimun
;
IN TXT "A test domain, created by Netman"
IN NS redhat52
IN NS debian.home
IN MX 10 redhat52.siyongc.domain.
IN MX 20 debian.home
;
localhost IN A 127.0.0.1
﹔
gw IN A 192.168.0.17
IN HINFO "Redhat" "MASQ"
IN TXT "The masquerade gateway to internet"
﹔
redhat52 IN A 192.168.0.17
IN MX 10 redhat52
IN MX 20 debian.home
IN HINFO "Dell PII 266" "Linux RedHat"
www IN CNAME redhat52
mail IN CNAME redhat52
ftp IN CNAME redhat52
news IN CNAME redhat52
smtp IN CNAME redhat52
﹔
pii266 IN A 192.168.0.15
IN MX 10 redhat52.siyongc.domain.
IN MX 20 debian.home.
﹔
slware36 IN A 192.168.0.18
IN MX 10 redhat52.siyongc.domain.
IN MX 20 debian.home.
﹔
rhroute IN A 192.168.0.4
IN MX 10 redhat52.siyongc.domain.
IN MX 20 debian.home.
﹔
home IN ns debian.home.siyongc.domain.
debian.home IN A 10.0.2.101
我们姑且不理会开头那几行的意思﹐那是给 DNS 系统本身使用的(我将会在“学习 Linux”文章里面再详细讨论)﹐这里我们只是看看几个记录名称而已﹕
分擔 DNS 工作
由於 DNS 的重要性日益顯著,為提高其容錯能力及查詢效能,我們在架設某一單一 zone 的時侯,常以多台伺服器來負責該 zone 的服務。其中,我們必需指定一台 Primary(master) DNS 伺服器,它是架設在某一個網域下被主要授權並控制所有名稱記錄的主控伺服器﹐管轄著該網域的所有記錄資料﹐這些記錄資料只有 primary(master) 可以修改。
但如果在一個比較大型的網路中﹐DNS 伺服器就會變得很繁忙﹐所以您可以設定多個 DNS 來分擔 master 的工作﹐但您或許不願意到每一個 DNS 伺服器去更新資料吧﹖而且就算您願意這樣做﹐也容易出現錯誤或資料不同步的情形。這樣您可以設定其它的伺服器為 secondary (slave) DNS 來複製 master 上面的記錄資料﹐這樣﹐其它的電腦可以被分派到不同的 DNS 做查詢﹐既可以分擔 master 的工作﹐而且資料也可以自動進行同步工作。為確保資料的一致性,master 每次更新過資料後會以 notify 機制主動通知 slave 前來同步。此外,您可以設定 DNS 資料同步的時間間隔﹐在 dns 檔案中的 Refresh 設定就是了。
网络基础 02 DNS 协议
一、域名和资源记录的定义
1、Name space definitions
2、资源记录定义(RR definitions)
2.1 格式
后面分析报文的时候详细解释。
2.2 类型值(TYPE values)
类型主要用在资源记录中,注意下面的值是QTYPE的一个子集。
类型 值和含义
A 1 a host address
NS 2 an authoritative name server
MD 3 a mail destination (Obsolete - use MX)
MF 4 a mail forwarder (Obsolete - use MX)
CNAME 5 the canonical name for an alias
SOA 6 marks the start of a zone of authority
MB 7 a mailbox domain name (EXPERIMENTAL)
MG 8 a mail group member (EXPERIMENTAL)
MR 9 a mail rename domain name (EXPERIMENTAL)
NULL 10 a null RR (EXPERIMENTAL)
WKS 11 a well known service description
PTR 12 a domain name pointer
HINFO 13 host information
MINFO 14 mailbox or mail list information
MX 15 mail exchange
TXT 16 text strings
2.3 查询类型(QTYPE values)
查询类型出现在问题字段中,查询类型是类型的一个超集,所有的类型都是可用的查询类型,其他查询类型如下:
AXFR 252 A request for a transfer of an entire zone
MAILB 253 A request for mailbox-related records (MB, MG or MR)
MAILA 254 A request for mail agent RRs (Obsolete - see MX)
* 255 A request for all records
2.4 类(CLASS values)
IN 1 the Internet
CS 2 the CSNET class (Obsolete - used only for examples in some obsolete RFCs)
CH 3 the CHAOS class
HS 4 Hesiod [Dyer 87]
2.5 查询类(QCLASS values)
查询类是类的一个超集
* 255 any class
3、Standard RRs
3.1 CNAME RDATA format
3.2 HINFO RDATA format
3.3 MB RDATA format (EXPERIMENTAL)
3.4 MD RDATA format (Obsolete)
3.5 MF RDATA format (Obsolete)
3.6 MG RDATA format (EXPERIMENTAL)
3.7 MINFO RDATA format (EXPERIMENTAL)
3.8 MR RDATA format (EXPERIMENTAL)
3.9 MX RDATA format
3.10 NULL RDATA format (EXPERIMENTAL)
3.11 NS RDATA format
3.12 PTR RDATA format
3.13 SOA RDATA format
3.14 TXT RDATA format
4、ARPA Internet specific RRs
4.1 A RDATA format
4.2 WKS RDATA format
5、IN-ADDR.ARPA domain
6、Defining new types, classes, and special namespaces
二、报文
1、报文格式(Format)
dns请求和应答都是用相同的报文格式,分成5个段(有的报文段在不同的情况下可能为空),如下:
+---------------------+
| Header | 报文头
+---------------------+
| Question | 查询的问题
+---------------------+
| Answer | 应答
+---------------------+
| Authority | 授权应答
+---------------------+
| Additional | 附加信息
+---------------------+
Header段是必须存在的,它定义了报文是请求还是应答,也定义了其他段是否需要存在,以及是标准查询还是其他。
Question段描述了查询的问题,包括查询类型(QTYPE),查询类(QCLASS),以及查询的域名(QNAME)。剩下的3个段包含相同的格式:一系列可能为空的资源记录(RRs)。Answer段包含回答问题的RRs;授权段包含授权域名服务器的RRs;附加段包含和请求相关的,但是不是必须回答的RRs。
1.1 Header的格式
报文头包含如下字段:
1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| ID |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
|QR| Opcode |AA|TC|RD|RA| Z | RCODE |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| QDCOUNT |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| ANCOUNT |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| NSCOUNT |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| ARCOUNT |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
各字段分别解释如下:
ID 请求客户端设置的16位标示,服务器给出应答的时候会带相同的标示字段回来,这样请求客户端就可以区分不同的请求应答了。
QR 1个比特位用来区分是请求(0)还是应答(1)。
OPCODE 4个比特位用来设置查询的种类,应答的时候会带相同值,可用的值如下:
0 标准查询 (QUERY)
1 反向查询 (IQUERY)
2 服务器状态查询 (STATUS)
3-15 保留值,暂时未使用
AA 授权应答(Authoritative Answer) - 这个比特位在应答的时候才有意义,指出给出应答的服务器是查询域名的授权解析服务器。
注意因为别名的存在,应答可能存在多个主域名,这个AA位对应请求名,或者应答中的第一个主域名。
TC 截断(TrunCation) - 用来指出报文比允许的长度还要长,导致被截断。
RD 期望递归(Recursion Desired) - 这个比特位被请求设置,应答的时候使用的相同的值返回。如果设置了RD,就建议域名服务器进行递归解析,递归查询的支持是可选的。
RA 支持递归(Recursion Available) - 这个比特位在应答中设置或取消,用来代表服务器是否支持递归查询。
Z 保留值,暂时未使用。在所有的请求和应答报文中必须置为0。
RCODE 应答码(Response code) - 这4个比特位在应答报文中设置,代表的含义如下:
0 没有错误。
1 报文格式错误(Format error) - 服务器不能理解请求的报文。
2 服务器失败(Server failure) - 因为服务器的原因导致没办法处理这个请求。
3 名字错误(Name Error) - 只有对授权域名解析服务器有意义,指出解析的域名不存在。
4 没有实现(Not Implemented) - 域名服务器不支持查询类型。
5 拒绝(Refused) - 服务器由于设置的策略拒绝给出应答。比如,服务器不希望对某些请求者给出应答,或者服务器不希望进行某些操作(比如区域传送zone transfer)。
6-15 保留值,暂时未使用。
QDCOUNT 无符号16位整数表示报文请求段中的问题记录数。
ANCOUNT 无符号16位整数表示报文回答段中的回答记录数。
NSCOUNT 无符号16位整数表示报文授权段中的授权记录数。
ARCOUNT 无符号16位整数表示报文附加段中的附加记录数。
1.2 Question的格式
在大多数查询中,Question段包含着问题(question),比如,指定问什么。这个段包含QDCOUNT(usually 1)个问题,每个问题为下面的格式:
1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| |
/ QNAME /
/ /
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| QTYPE |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| QCLASS |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
字段含义如下
QNAME 域名被编码为一些labels序列,每个labels包含一个字节表示后续字符串长度,以及这个字符串,以0长度和空字符串来表示域名结束。注意这个字段可能为奇数字节,不需要进行边界填充对齐。
QTYPE 2个字节表示查询类型,.取值可以为任何可用的类型值,以及通配码来表示所有的资源记录。
QCLASS 2个字节表示查询的协议类,比如,IN代表Internet。
1.3 资源记录格式(Resource record)
应答,授权,附加段都共用相同的格式:多个资源记录,资源记录的个数由报文头段中对应的几个数值确定,每个资源记录格式如下:
1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| |
/ /
/ NAME /
| |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| TYPE |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| CLASS |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| TTL |
| |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| RDLENGTH |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
/ RDATA /
/ /
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
各字段含义如下:
NAME 资源记录包含的域名
TYPE 2个字节表示资源记录的类型,指出RDATA数据的含义
CLASS 2个字节表示RDATA的类
TTL 4字节无符号整数表示资源记录可以缓存的时间。0代表只能被传输,但是不能被缓存。
RDLENGTH 2个字节无符号整数表示RDATA的长度
RDATA 不定长字符串来表示记录,格式根TYPE和CLASS有关。比如,TYPE是A,CLASS 是 IN,那么RDATA就是一个4个字节的ARPA网络地址。
1.4 报文压缩
为了减小报文,域名系统使用一种压缩方法来消除报文中域名的重复。使用这种方法,后面重复出现的域名或者labels被替换为指向之前出现位置的指针。
指针占用2个字节,格式如下:
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| 1 1| OFFSET |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
前两个比特位都为1。因为lablels限制为不多于63个字节,所以label的前两位一定为0,这样就可以让指针与label进行区分。(10 和 01 组合保留,以便日后使用) 。偏移值(OFFSET)表示从报文开始的字节指针。偏移量为0表示ID字段的第一个字节。
压缩方法让报文中的域名成为:
- 以0结尾的labels序列
- 一个指针
- 指针结尾的labels序列
指针只能在域名不是特殊格式的时候使用,否则域名服务器或解析器需要知道资源记录的格式。目前还没有这种情况,但是以后可能会出现。
如果报文中的域名需要计算长度,并且使用了压缩算法,那么应该使用压缩后的长度,而不是压缩前的长度。
程序可以自由选择是否使用指针,虽然这回降低报文的容量,而且很容易产生截断。不过所有的程序都应该能够理解收到的报文中包含的指针。
比如,一个报文需要使用域名F.ISI.ARPA,FOO.F.ISI.ARPA,ARPA,以及根。忽略报文中的其他字段,应该编码为:
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
20 | 1 | F |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
22 | 3 | I |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
24 | S | I |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
26 | 4 | A |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
28 | R | P |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
30 | A | 0 |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
40 | 3 | F |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
42 | O | O |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
44 | 1 1| 20 |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
64 | 1 1| 26 |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
92 | 0 | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
偏移20的是域名F.ISI.ARPA。域名FOO.F.ISI.ARPA偏移40; 这样表示FOO的label后面跟着一个指向之前F.ISI.ARPA的指针。域名ARPA偏移64,使用一个指针指向F.ISI.ARPA的ARPA。注意可以用这个指针是因为ARPA是从偏移位置20开始的labels序列中的最后一个label。根域名在位置92定义为一个0,没有labels。
2、传输(Transport)
DNS假设报文以数据报,或者从虚链路上以字节流进行传输。虚链路可以用来任何的DNS的传输,数据报可以减少代价提高传输性能。区域刷新必须使用虚链路,因为需要一个可靠的传输。
因特网中DNS支持端口53的TCP[RFC-793]和端口53的UDP [RFC-768]传输。
2.1 使用UDP
消息通过UDP的53端口进行传输。
UDP传输的消息严格要求限制在512字节内(不包括IP和UDP头)。长报文被截断,同时置报文头的TC标志位。
UDP不能用于区域传输,主要用在标准的域名查询。报文通过UDP可能会丢失,所以重传机制是需要的,请求和应答可能在网络中或者服务器处理的时候被重新排序,所以解析客户端不能依赖请求的发送顺序。
UDP的最优重传策略会因为网络的性能,客户的需要而不同,但是下面是推荐的:
- 客户端在对一台固定的服务器重试之前,尝试一下其他的服务器。
- 如果可能的话,重传的时间间隔需要建立在统计分析数据的基础上,太快的重试可能因为量太大导致服务器响应慢。建议的重试时间为2-5秒。
2.2 使用TCP
通过TCP发送的报文使用53端口,报文的前面有个字节表示后面报文的长度,长度不包括自己占用的2个字节,这个长度使得底层收取完整的报文后在交给上层处理。
很多连接管理策略如下:
- 服务器不能阻塞其他传输TCP数据的请求。
- 服务器需要支持多连接
- 服务器要等客户端主动关闭连接,除非所有的数据都已经传输完了。
- 如果服务器想关闭没有通讯的连接来释放资源,那么需要等待大约2分钟的时间。特别是要等SOA和AXFR(刷新操作中)在一个连接上传输完。服务器关闭连接的时候可以单方面的关闭,或者直接reset掉连接。
三、实例
1、请求解析www.baidu.com.
在linux下使用tcpdump port 53抓包,同时使用dig进行解析测试,得到结果如下:
; (1 server found)
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 1169
;; flags: qr rd ra; QUERY: 1, ANSWER: 3, AUTHORITY: 4, ADDITIONAL: 0
;; QUESTION SECTION:
;www.baidu.com. IN A
;; ANSWER SECTION:
www.baidu.com. 1200 IN CNAME www.a.shifen.com.
www.a.shifen.com. 600 IN A 121.14.88.76
www.a.shifen.com. 600 IN A 121.14.89.10
;; AUTHORITY SECTION:
a.shifen.com. 86411 IN NS ns5.a.shifen.com.
a.shifen.com. 86411 IN NS ns6.a.shifen.com.
a.shifen.com. 86411 IN NS ns1.a.shifen.com.
a.shifen.com. 86411 IN NS ns3.a.shifen.com.
1.1 请求报文
0x0000: 4500 003b f8cf 0000 4011 f9ae xxxx xxxx E..;....@......r
0x0010: xxxx xxxx 92b8 0035 0027 23ed 0491 0100 ...q...5.'#.....
0x0020: 0001 0000 0000 0000 0377 7777 0562 6169 .........www.bai
0x0030: 6475 0363 6f6d 0000 0100 01 du.com.....
0491:报文ID,也就是十进制的1169
0100:标志,置了RD字段,也就是期望递归的请求
0001 0000 0000 0000:分别为问题数,应答数,授权记录数,附加记录数,也就是1个问题
0377 7777 0562 6169 6475 0363 6f6d 00:也就是www.baidu.com的编码
00 0100 01:查询类型和查询类都为1,也就是internet的A记录查询
1.2 应答报文
0x0000: 4500 00be 0016 4000 4011 b1e5 xxxx xxxx E.....@.@......q
0x0010: xxxx xxxx 0035 92b8 00aa 33e1 0491 8180 ...r.5....3.....
0x0020: 0001 0003 0004 0000 0377 7777 0562 6169 .........www.bai
0x0030: 6475 0363 6f6d 0000 0100 01c0 0c00 0500 du.com..........
0x0040: 0100 0004 b000 0f03 7777 7701 6106 7368 ........www.a.sh
0x0050: 6966 656e c016 c02b 0001 0001 0000 0258 ifen...+.......X
0x0060: 0004 790e 584c c02b 0001 0001 0000 0258 ..y.XL.+.......X
0x0070: 0004 790e 590a c02f 0002 0001 0001 518b ..y.Y../......Q.
0x0080: 0006 036e 7335 c02f c02f 0002 0001 0001 ...ns5././......
0x0090: 518b 0006 036e 7336 c02f c02f 0002 0001 Q....ns6././....
0x00a0: 0001 518b 0006 036e 7331 c02f c02f 0002 ..Q....ns1././..
0x00b0: 0001 0001 518b 0006 036e 7333 c02f ....Q....ns3./
注意8180,也就是二进制的 1 0000 0 0 1 1 000 0000 ,说明是应答,置了RD和RA位
黄色背景为压缩编码,比如c016就代表第22个字节,也就是com。
相关推荐
dns协议解析包 v1.0源码 介绍: 一个c#开发的dns协议解析包。可以生成查询请求,接收返回的数据,并解析出结果。 应用场景: 如果只是想根据域名获取ip地址,可以使用.net自带的类“System.Net.Dns.GetHostByName...
在本项目中,“DNS协议解析源码程序”旨在实现DNS查询和响应的解析功能,这涉及到对DNS报文结构的理解以及C#编程语言的应用。 首先,我们来看DNS协议的基本概念。DNS协议基于UDP(User Datagram Protocol)或TCP...
网络中,网站的IP地址很难让人去记住,一般都是使用域名去访问,因此就有了DNS服务器,根据IP...发送这个过程并不是解析器来执行的,而是委托给了操作系统内部的协议栈去做处理,协议栈通过网卡将消息发送给DNS服务器。
**DNS协议分析实验报告** **一、实验目的** 本次DNS协议分析实验的主要目的是熟悉`nslookup`命令的使用,以及深入了解DNS(域名系统)的工作原理。通过解析域名www.hunau.net并分析其对应的IP地址解析请求和应答...
DNS(域名服务协议)是互联网中的一项关键技术和基础服务,它负责将域名地址转换为IP地址,使得...通过学习DNS协议,我们可以更好地理解域名系统的工作原理,以及如何通过DNS查询和响应报文格式来获取域名解析信息。
在IT领域,理解和掌握DNS解析协议对于网络编程至关重要,特别是当你需要编写自定义的非阻塞DNS解析函数时。下面将详细解释DNS解析协议的基础知识,并提供一个C语言实现的例子。 首先,了解DNS的工作流程: 1. **DNS...
综上所述,这个项目涉及了网络编程、DNS协议解析、数据存储以及可能的用户界面设计等多个方面。通过深入理解并完善这个项目,开发者不仅可以掌握C#编程,还能深入了解DNS工作原理和网络服务的实现。对于想在系统级...
实验报告5:DNS协议分析 本实验旨在深入理解DNS(Domain Name System)的工作原理,并通过使用nslookup命令来熟悉DNS查询的过程。实验中,我们分析了三个特定的nslookup命令产生的DNS数据报,以了解域名解析请求和...
开发者可能需要了解一些基础的网络协议知识,如UDP(DNS通常使用此协议传输数据)和DNS查询类型(A记录、CNAME记录等)。 为了使用这段源码,开发者首先需要将其导入到易语言环境中,然后根据自己的需求调用相关...
DNS 地址解析协议实验 DNS(Domain Name System)地址解析协议是一种将域名转换为 IP 地址的协议。该协议是互联网基础设施的重要组件,用于将人类易于记忆的域名转换为计算机易于识别的 IP 地址。 在本实验中,...
DNS协议pcap数据包下载,支持抓包软件(如:wireshark)打开并学习DNS协议报文解析。需要其他协议,请查看我发布的其他资源。
总的来说,C#实现DNS协议涉及网络编程、数据解析和缓存策略等多个方面,这对于提升开发者在网络应用开发中的能力具有重要作用。通过深入理解并实践这些知识,可以更好地理解和处理网络服务的实现,从而提高应用程序...
### DNS协议分析 #### 实验目的 本实验旨在让学生通过实践操作深入了解DNS(Domain Name System)的工作原理及其报文格式。通过使用`nslookup`工具和Wireshark协议分析软件,学习如何解析域名、捕获并分析DNS数据包...
综上所述,"DNS.rar"中的项目提供了一个学习和实践DNS协议、格式解析以及ENUM转换的宝贵平台。通过深入理解并实现这些概念,开发者可以增强对互联网基础架构的理解,并提高在网络编程领域的技能。
DNS协议规范主要由两份RFC(Request for Comments)文档定义:RFC1034和RFC1035。这些文档详细描述了DNS的工作原理、数据结构、查询和响应过程以及资源记录的格式。 RFC1034,标题为“域名系统(DNS)的概念和机制...
DNS服务器之间的通信遵循TCP/IP协议,主要使用UDP协议在53端口进行。DNS查询有两种类型:正向解析和反向解析。正向解析是将主机名转换为IP地址,而反向解析则相反,将IP地址转换为主机名。反向解析主要用于验证IP...
DNS 报文结构实例解析 DNS 报文结构是指 DNS 协议中报文的格式和组织方式,包括报文头、查询问题、回答和其他相关信息。了解 DNS 报文结构是理解 DNS 协议的基础。 报文头是 DNS 报文的开头部分,包括标识 ID、...
首先,DNS协议是一种基于UDP的应用层协议,其主要功能是将易于记忆的域名解析为IP地址,以便于网络通信。在C#中,我们通常使用Socket类来实现网络通信。Socket提供了低级别的网络通信接口,可以让我们直接操作TCP/IP...
【DNS协议解析】 DNS协议定义了一种查询和响应的格式,包括查询报文和响应报文。查询报文包含要查找的域名和查询类型(如A记录表示IP地址查询)。响应报文则包含查询结果,可能包括IP地址或其他DNS记录类型。C++...
首先,DNS协议基于UDP(User Datagram Protocol)进行通信,但也有使用TCP的情况。在DNS查询过程中,客户端向DNS服务器发送请求,包含要解析的域名和查询类型(如A记录、AAAA记录、MX记录等)。服务器收到请求后,会...