`

AtomicInteger 使用

阅读更多
  Java中,i++和++i都不是原子操作,多线程环境下需要使用synchronized关键字。JDK1.5的java.util.concurrent.atomic包提供了原子操作类,通过Unsafe类调native方法来实现。

  这里以AtomicInteger为例:

内部存储

维护了一个整型值,其初始值为0。考虑到多线程操作,使用volatile来保证其可见性:
private volatile int value;


单独赋值操作

通过构造函数设置:
public AtomicInteger(int initialValue) {
	value = initialValue;
}


Setter:
public final void set(int newValue) {
	value = newValue;
}


延迟赋值:
public final void lazySet(int newValue) {
	unsafe.putOrderedInt(this, valueOffset, newValue);
}


获取和赋值复合操作:

Getter:
public final int get() {
	return value;
}


获取原值并设置新值:
public final int getAndSet(int newValue) {
	for (;;) {
		int current = get();
		if (compareAndSet(current, newValue))
			return current;
	}
}


获取原值并自增:
public final int getAndIncrement() {
	for (;;) {
		int current = get();
		int next = current + 1;
		if (compareAndSet(current, next))
			return current;
	}
}


获取原值并自减:
public final int getAndDecrement() {
	for (;;) {
		int current = get();
		int next = current - 1;
		if (compareAndSet(current, next))
			return current;
	}
}


获取原值并加上指定值:

delta可以为负值,实现getAndSubtract功能

public final int getAndAdd(int delta) {
	for (;;) {
		int current = get();
		int next = current + delta;
		if (compareAndSet(current, next))
			return current;
	}
}


自增并获取新值:
public final int incrementAndGet() {
	for (;;) {
		int current = get();
		int next = current + 1;
		if (compareAndSet(current, next))
			return next;
	}
}


自减并获取新值:
public final int decrementAndGet() {
	for (;;) {
		int current = get();
		int next = current - 1;
		if (compareAndSet(current, next))
			return next;
	}
}


加上指定值并获取新值:

同上,delta可以为负值,实现subtractAndGet功能

public final int addAndGet(int delta) {
	for (;;) {
		int current = get();
		int next = current + delta;
		if (compareAndSet(current, next))
			return next;
	}
}


可以看出,上面的方法比较类似:循环地调用compareAndSet方法,一旦成功即返回。

看下compreAndSet方法:
public final boolean compareAndSet(int expect, int update) {
	return unsafe.compareAndSwapInt(this, valueOffset, expect, update);
}


同时,还提供了weakCompareAndSet方法,调用的unsafe方法和上面相同:
public final boolean weakCompareAndSet(int expect, int update) {
	return unsafe.compareAndSwapInt(this, valueOffset, expect, update);
}



性能测试

1. 和synchronized比较,单线程执行1000w次自增操作:

public class AtomicIntegerSynchTest {

	private int value;
	
	public AtomicIntegerSynchTest(int value) {
		this.value = value;
	}
	
	public synchronized int increase() {
		return value++;
	}
	
	public static void main(String[] args) {
		long start = System.currentTimeMillis();
		
		AtomicIntegerSynchTest test = new AtomicIntegerSynchTest(0);
		for (int i = 0; i < 10000000; i++) {
			test.increase();
		}
		long end = System.currentTimeMillis();
		System.out.println("Synch elapsed: " + (end - start) + "ms");
		
		long start2 = System.currentTimeMillis();
		AtomicInteger atomicInt = new AtomicInteger(0);
		for (int i = 0; i < 10000000; i++) {
			atomicInt.incrementAndGet();
		}
		long end2 = System.currentTimeMillis();
		System.out.println("Atomic elapsed: " + (end2 - start2) + "ms");
	}
}

输出:

Synch elapsed: 383ms
Atomic elapsed: 208ms (单线程环境下,AtomicInteger比同步的性能稍好一点)


2. 多线程多次操作:

这里使用100个线程,每个线程执行10w次自增操作,为了统计100个线程并发执行所耗费的时间,使用CountDownLatch来协调。

public class AtomicIntegerMultiThreadTest {

	private /*volatile*/ int value;

	public AtomicIntegerMultiThreadTest(int value) {
		this.value = value;
	}

	public synchronized int increase() {
		return value++;
	}
	
	public int unSyncIncrease() {
		return value++;
	}
	
	public int get() {
		return value;
	}

	public static void main(String[] args) throws InterruptedException {
		long start = System.currentTimeMillis();

		final CountDownLatch latch = new CountDownLatch(100);

		final AtomicIntegerMultiThreadTest test = new AtomicIntegerMultiThreadTest(0);
		for (int i = 0; i < 100; i++) {
			new Thread(new Runnable() {

				@Override
				public void run() {
					for (int i = 0; i < 100000; i++) {
						test.increase();
						//test.unSyncIncrease();
					}

					latch.countDown();
				}
			}).start();
		}

		latch.await();
		long end = System.currentTimeMillis();
		System.out.println("Synch elapsed: " + (end - start) + "ms, value=" + test.get());

		long start2 = System.currentTimeMillis();
		final CountDownLatch latch2 = new CountDownLatch(100);
		final AtomicInteger atomicInt = new AtomicInteger(0);
		for (int i = 0; i < 100; i++) {
			new Thread(new Runnable() {

				@Override
				public void run() {
					for (int i = 0; i < 100000; i++) {
						atomicInt.incrementAndGet();
					}
					
					latch2.countDown();
				}
			}).start();
		}

		latch2.await();
		long end2 = System.currentTimeMillis();
		System.out.println("Atomic elapsed: " + (end2 - start2) + "ms, value=" + atomicInt.get());
	}
}

输出:

Synch elapsed: 1921ms, value=10000000
Atomic elapsed: 353ms, value=10000000 (AtomicInteger的性能是synchronized的5倍多)

当给value加上volatile修饰符时:

Synch elapsed: 2268ms, value=10000000 (volatile禁止代码重排序,一定程度上降低了性能)
Atomic elapsed: 337ms, value=10000000

当调用未同步的自增方法unSyncIncrease时:

Synch elapsed: 216ms, value=5852266 (非原子操作不加同步,导致结果错误)
Atomic elapsed: 349ms, value=10000000
分享到:
评论

相关推荐

Global site tag (gtag.js) - Google Analytics