`
chemingliang
  • 浏览: 131030 次
  • 性别: Icon_minigender_1
  • 来自: 北京
社区版块
存档分类
最新评论

数据结构:栈应用_求解汉诺塔(Hanoi)1

阅读更多

/************************************************************************/

/* 数据结构:栈应用:汉诺塔(Hanoi)问题                                                           */

/* 挑灯看剑-shuchangs@126.com 2010-10                                                                   */

/* 云歌国际(Cloud Singers International www.cocoral.com                              */

/************************************************************************/

#include <stdio.h>

#include <malloc.h>

#include "core.h"

/************************************************************************/

/* 以下是栈基本操作                                                                                      */

/************************************************************************/

//结点数据结构

typedef struct NODE

{

       int data;

       struct NODE* next;

       struct NODE* prior;

}Node, * NodePointer;

 

//栈元数据结构

typedef struct STACK

{

       int len;

       struct NODE* top;

       struct NODE* base;

}Stack, * StackPointer;

 

void main_HANOI()

{

       //*************函数原型******************

       Status StackIn(StackPointer SP, int e);

       void autoStack(StackPointer SP, int n);

       void StackPrint(Stack S, char tag);

       Status StackOut(StackPointer SP, NodePointer NP);

       void Hanoi();

       //*************函数原型******************

       Stack S = { 0, NULL, NULL };

       Node N = { 0, NULL, NULL};

       int i = 0;

       //autoStack(&S, 4);

       //StackPrint(S, 't');

       Hanoi();

}

//进栈操作,结点作为栈顶元素入栈

Status StackIn(StackPointer SP, int e)

{

       static Status StackIsEmpty(Stack S);//函数原型

       Status status = ERROR;

       NodePointer p = NULL;//遍历指针,非游离指针

       NodePointer NP = (NodePointer) malloc(sizeof(Node));

       NP->data = e;

       //进行预处理

       if (!StackIsEmpty(*SP))

       {

              //将结点追加为栈顶元素

              p = SP->top; //p指向栈顶

              p->next = NP;

 

              NP->prior = p;

              NP->next = NULL;

 

              SP->top = NP;

              SP->len += 1; //长度加1

              //puts("进栈成功!");

              status = OK;

       }

       else

       {

              SP->base = SP->top = NP;

              NP->next = NP->prior = NULL;

              SP->len = 1; //长度为1

              //puts("进栈成功!");

              status = OK;

       }

       return status;

}

 

//自动化栈,初始化汉诺塔(Hanio

void autoStack(StackPointer SP, int n)

{

       COUNT i;

       for (i = n; i >= 1; i--)

       {

              if (StackIn(SP, i))

              {}

              else

              {

                     break;

              }

       }

}

 

static Status StackIsEmpty(Stack S)

{

       if (S.len == 0 || S.base == NULL || S.top == NULL)

              return TRUE;

       else

              return FALSE;

}

 

//出栈操作,并用结点返回该值

Status StackOut(StackPointer SP, NodePointer NP)

{

       Status status = ERROR;

       NodePointer p = SP->top; //p指向栈顶

       if (!StackIsEmpty(*SP))

       {

              if (SP->len == 1)

              {

                     SP->base = SP->top = NULL;

                     SP->len = 0; //长度为0

 

                     NP->data = p->data;

                     NP->next = p->next;

                     NP->prior = p->prior;

                     //puts("出栈成功!");

                     status = OK;

              }

              else

              {

                     p->prior->next = NULL;

                     SP->top = p->prior;

                     SP->len -= 1; //长度减1

                     NP->data = p->data;

                     NP->next = p->next;

                     NP->prior = p->prior;

                     //puts("出栈成功!");

                     status = OK;

              }

       }

       else

       {

              //puts("出栈失败!栈为空!");

              status = ERROR;

       }

       free(p); //p为游离结点,最后释放p内存

       return status;

}

 

//栈打印操作,tag参数IN SET{'B','T'}

void StackPrint(Stack S, char tag)

{

       static Status StackIsEmpty(Stack S);//函数原型

       NodePointer p = NULL;

       COUNT i = 1;

       COUNT n = S.len;

       printf("栈长度:%d\n", n);

       if (!StackIsEmpty(S)) //如果线性链表非空

       {

              switch (tag)

              {

              case 'B':

                     p = S.base;

                     puts("打印结点信息(栈底到栈顶):");

                     for (i = 1; i <= n; i++)

                     {

                            printf("Node[%d] = %d\n", i, p->data);

                            p = p->next;

                     }

                     break;

              case 'b':

                     p = S.base;

                     puts("打印结点信息(栈底到栈顶):");

                     for (i = 1; i <= n; i++)

                     {

                            printf("Node[%d] = %d\n", i, p->data);

                            p = p->next;

                     }

                     break;

              case 'T':

                     p = S.top;

                     puts("打印结点信息(栈顶到栈底):");

                     for (i = n; i >= 1; i--)

                     {

                            printf("Node[%d] = %d\n", i, p->data);

                            p = p->prior;

                     }

                     break;

              case 't':

                     p = S.top;

                     puts("打印结点信息(栈顶到栈底):");

                     for (i = n; i >= 1; i--)

                     {

                            printf("Node[%d] = %d\n", i, p->data);

                            p = p->prior;

                     }

                     break;

              default:

                     puts("打印失败!");

                     break;

              }

       }

       else //如果栈为空

       {

              puts("打印失败!栈为空!");

       }

       free(p);//p为游离结点,最后释放p内存

}

/************************************************************************/

/* 以下为汉诺塔(Hanoi)求解                                                                        */

/************************************************************************/

void Hanoi()

{

       void recursion(int n, StackPointer from, StackPointer tmp,

              StackPointer to, int* stn);

 

       Stack A = { 0, NULL, NULL }; //起始栈

       Stack B = { 0, NULL, NULL }; //临时栈

       Stack C = { 0, NULL, NULL }; //目的栈

 

       int n = 4;

       int cnt = 0; //统计搬运次数

 

       //初始化A,生成4Hanoi

       autoStack(&A, n);

 

       puts("--------------------------------");

       puts("汉诺塔:搬运前 A 盘子情况:");

       StackPrint(A, 't');

       puts("\nB 盘子情况:");

       StackPrint(B, 't');

       puts("\nC 盘子情况:");

       StackPrint(C, 't');

       puts("--------------------------------");

 

       recursion(n, &A, &B, &C, &cnt); //递归调用

 

       puts("--------------------------------");

       puts("汉诺塔:搬运后 A 盘子情况:");

       StackPrint(A, 't');

       puts("\nB 盘子情况:");

       StackPrint(B, 't');

       puts("\nC 盘子情况:");

       StackPrint(C, 't');

       puts("--------------------------------");

       printf("搬运次数合计:%d\n", cnt);

}

 

//参见版面《数据结构:栈应用_求解汉诺塔(Hanoi)2》

0
0
分享到:
评论
1 楼 deepfuture 2010-10-16  
不错,用栈来实现递归,速度和效率较高,建议部分栈操作这块用内联汇编,这样更好

相关推荐

Global site tag (gtag.js) - Google Analytics