`
hui_jing_880210
  • 浏览: 41658 次
  • 性别: Icon_minigender_1
  • 来自: 北京
社区版块
存档分类
最新评论

zookeeper leader选举

阅读更多

首先我们来看看什么是leader选举。其实这个很好理解,leader选举就像总统选举一样,每人一票,获得多数票的人就当选为总统了。在 zookeeper集群中也是一样,每个节点都会投票,如果某个节点获得超过半数以上的节点的投票,则该节点就是leader节点了。

国家选举总统是为了选一个最高统帅,治理国家。那么zookeeper集群选举的目的又是什么呢?其实这个要清楚明白的解释还是挺复杂的。我们可以 简单点想这个问题:我们有一个zookeeper集群,有好几个节点。每个节点都可以接收请求,处理请求。那么,如果这个时候分别有两个客户端向两个节点 发起请求,请求的内容是修改同一个数据。比如客户端c1,请求节点n1,请求是set a = 1; 而客户端c2,请求节点n2,请求内容是set a = 2;

那么最后a是等于1还是等于2呢? 这在一个分布式环境里是很难确定的。解决这个问题有很多办法,而zookeeper的办法是,我们选一个总统出来,所有的这类决策都提交给总统一个人决策,那之前的问题不就没有了么。

那我们现在的问题就是怎么来选择这个总统呢? 在现实中,选择总统是需要宣讲拉选票的,那么在zookeeper的世界里这又如何处理呢?我们还是show code吧。

在QuorumPeer的startLeaderElection方法里包含leader选举的逻辑。Zookeeper默认提供了4种选举方式,默认是第4种: FastLeaderElection。

我们先假设我们这是一个崭新的集群,崭新的集群的选举和之前运行过一段时间的选举是有稍许不同的,后面会提及。

节点状态: 每个集群中的节点都有一个状态 LOOKING, FOLLOWING, LEADING, OBSERVING。都属于这4种,每个节点启动的时候都是LOOKING状态,如果这个节点参与选举但最后不是leader,则状态是 FOLLOWING,如果不参与选举则是OBSERVING,leader的状态是LEADING。

开始这个选举算法前,每个节点都会在zoo.cfg上指定的监听端口启动监听(server.1=127.0.0.1:20881:20882),这里的20882就是这里用于选举的端口。

在FastLeaderElection里有一个Manager的内部类,这个类里有启动了两个线 程:WorkerReceiver, WorkerSender。为什么说选举这部分复杂呢,我觉得就是这些线程就像左右互搏一样,非常难以理解。顾名思 义,这两个线程一个是处理从别的节点接收消息的,一个是向外发送消息的。对于外面的逻辑接收和发送的逻辑都是异步的。

这里配置好了,QuorumPeer的run方法就开始执行了,这里实现的是一个简单的状态机。因为现在是LOOKING状态,所以进入LOOKING的分支,调用选举算法开始选举了:

setCurrentVote(makeLEStrategy().lookForLeader());

而在lookForLeader里主要是干什么呢?首先我们会更新一下一个叫逻辑时钟的东西,这也是在分布式算法里很重要的一个概念,但是在这里先 不介绍,可以参考后面的论文。然后决定我要投票给谁。不过zookeeper这里的选举真直白,每个节点都选自己(汗),选我,选我,选我...... 然后向其他节点广播这个选举信息。这里实际上并没有真正的发送出去,只是将选举信息放到由WorkerSender管理的一个队列里。

复制代码
synchronized(this){
    //逻辑时钟           
    logicalclock++;
    //getInitLastLoggedZxid(), getPeerEpoch()这里先不关心是什么,后面会讨论
    updateProposal(getInitId(), getInitLastLoggedZxid(), getPeerEpoch());
}

//getInitId() 即是获取选谁,id就是myid里指定的那个数字,所以说一定要唯一
private long getInitId(){
        if(self.getQuorumVerifier().getVotingMembers().containsKey(self.getId()))       
            return self.getId();
        else return Long.MIN_VALUE;
}

//发送选举信息,异步发送
sendNotifications();
复制代码

现在我们去看看怎么把投票信息投递出去。这个逻辑在WorkerSender里,WorkerSender从sendqueue里取出投票,然后交 给QuorumCnxManager发送。因为前面发送投票信息的时候是向集群所有节点发送,所以当然也包括自己这个节点,所以 QuorumCnxManager的发送逻辑里会判断,如果这个要发送的投票信息是发送给自己的,则不发送了,直接进入接收队列。

复制代码
public void toSend(Long sid, ByteBuffer b) {
        if (self.getId() == sid) {
             b.position(0);
             addToRecvQueue(new Message(b.duplicate(), sid));
        } else {
             //发送给别的节点,判断之前是不是发送过
             if (!queueSendMap.containsKey(sid)) {
                 //这个SEND_CAPACITY的大小是1,所以如果之前已经有一个还在等待发送,则会把之前的一个删除掉,发送新的
                 ArrayBlockingQueue<ByteBuffer> bq = new ArrayBlockingQueue<ByteBuffer>(SEND_CAPACITY);
                 queueSendMap.put(sid, bq);
                 addToSendQueue(bq, b);

             } else {
                 ArrayBlockingQueue<ByteBuffer> bq = queueSendMap.get(sid);
                 if(bq != null){
                     addToSendQueue(bq, b);
                 } else {
                     LOG.error("No queue for server " + sid);
                 }
             }
             //这里是真正的发送逻辑了
             connectOne(sid);
                
        }
    }
复制代码

connectOne就是真正发送了。在发送之前会先把自己的id和选举地址发送过去。然后判断要发送节点的id是不是比自己的id大,如果大则不 发送了。如果要发送又是启动两个线程:SendWorker,RecvWorker(这种一个进程内许多不同种类的线程,各自干活的状态真的很难理解)。 发送逻辑还算简单,就是从刚才放到那个queueSendMap里取出,然后发送。并且发送的时候将发送出去的东西放到一个 lastMessageSent的map里,如果queueSendMap里是空的,就发送lastMessageSent里的东西,确保对方一定收到 了。

看完了SendWorker的逻辑,再来看看数据接收的逻辑吧。还记得前面提到的有个Listener在选举端口上启动了监听么,现在这里应该接收 到数据了。我们可以看到receiveConnection方法。在这里,如果接收到的的信息里的id比自身的id小,则断开连接,并尝试发送消息给这个 id对应的节点(当然,如果已经有SendWorker在往这个节点发送数据,则不用了)。

如果接收到的消息的id比当前的大,则会有RecvWorker接收数据,RecvWorker会将接收到的数据放到recvQueue里。

而FastLeaderElection的WorkerReceiver线程里会不断地从这个recvQueue里读取Message处理。在 WorkerReceiver会处理一些协议上的事情,比如消息格式等。除此之外还会看看接收到的消息是不是来自投票成员。如果是投票成员,则会看看这个 消息里的状态,如果是LOOKING状态并且当前的逻辑时钟比投票消息里的逻辑时钟要高,则会发个通知过去,告诉谁是leader。在这里,刚刚启动的崭 新集群,所以逻辑时钟基本上都是相同的,所以这里还没判断出谁是leader。不过在这里我们注意到如果当前节点的状态是LOOKING的话,接收逻辑会 将接收到的消息放到FastLeaderElection的recvqueue里。而在FastLeaderElection会从这个recvqueue 里读取东西。

这里就是选举的主要逻辑了:totalOrderPredicate

protected boolean totalOrderPredicate(long newId, long newZxid, long newEpoch, long curId, long curZxid, long curEpoch) {return ((newEpoch > curEpoch) || 
                ((newEpoch == curEpoch) &&
                ((newZxid > curZxid) || ((newZxid == curZxid) && (newId > curId)))));
    }

1. 判断消息里的epoch是不是比当前的大,如果大则消息里id对应的server我就承认它是leader

2. 如果epoch相等则判断zxid,如果消息里的zxid比我的大我就承认它是leader

3. 如果前面两个都相等那就比较一下server id吧,如果比我的大我就承认它是leader。

关于前面两个东西暂时我们不去关心它,对于新启动的集群这两者都是相等的。

那这样看来server id的大小也是leader选举的一环啊(有的人生下来注定就不平凡,这都是命啊)。

最后我们来看看,很多文章所介绍的,如果超过一半的人说它是leader,那它就是leader的逻辑吧

复制代码
private boolean termPredicate(
            HashMap<Long, Vote> votes,
            Vote vote) {

        HashSet<Long> set = new HashSet<Long>();
        //遍历已经收到的投票集合,将等于当前投票的集合取出放到set中
        for (Map.Entry<Long,Vote> entry : votes.entrySet()) {
            if (self.getQuorumVerifier().getVotingMembers().containsKey(entry.getKey())
                    && vote.equals(entry.getValue())){
                set.add(entry.getKey());
            }
        }
        
        //统计set,也就是投某个id的票数是否超过一半
        return self.getQuorumVerifier().containsQuorum(set);
    }

    public boolean containsQuorum(Set<Long> ackSet) {
        return (ackSet.size() > half);
    }
复制代码

最后一关:如果选的是自己,则将自己的状态更新为LEADING,否则根据type,要么是FOLLOWING,要么是OBSERVING。

到这里选举就结束了。

这里介绍的是一个新集群启动时候的选举过程,启动的时候就是根据zoo.cfg里的配置,向各个节点广播投票,一般都是选投自己。然后收到投票后就会进行进行判断。如果某个节点收到的投票数超过一半,那么它就是leader了。 

了解了这个过程,我们来看看另外一个问题:

一个集群有3台机器,挂了一台后的影响是什么?挂了两台呢? 

挂了一台:挂了一台后就是收不到其中一台的投票,但是有两台可以参与投票,按照上面的逻辑,它们开始都投给自己,后来按照选举的原则,两个人都投票 给其中一个,那么就有一个节点获得的票等于2,2 > (3/2)=1 的,超过了半数,这个时候是能选出leader的。

挂了两台: 挂了两台后,怎么弄也只能获得一张票, 1 不大于 (3/2)=1的,这样就无法选出一个leader了。

分享到:
评论

相关推荐

    fast paxos算法与zookeeper leader选举源代码分析.doc

    fast paxos算法与zookeeper leader选举源代码分析.doc

    3、zookeeper的选举

    Leader 选举分为 Zookeeper 集群初始化启动时选举和 Zookeeper 集群运行期间 Leader 重新选举两种情况。 在讲解 Leader 选举前先了解一下 Zookeeper 节点 4 种可能状态和事务ID概念。 本文是在zookeeper的部署与验证...

    面试官:说一说Zookeeper中Leader选举机制.doc

    面试官:说一说Zookeeper中Leader选举机制.doc

    Zookeeper源码剖析:深入理解Leader选举机制

    本文详细分析了Zookeeper的源码,特别是Leader选举过程的实现。首先,介绍了阅读源码的意义,包括技术提升、框架掌握、问题定位、面试准备、深入理解技术以及参与开源社区。接着,提供了一系列高效阅读源码的方法,...

    zookeeper选举机制图

    zookeeper选举机制图,内讲述了zookeeper是如何选举出leader、fllower的

    在分布式环境中Leader选举互斥锁和读写锁该如何实现

    在分布式环境中实现Leader选举、互斥锁和读写锁通常涉及到协调服务,如etcd、Zookeeper或Consul。这些服务提供了必要的原语来处理节点间的协调和数据一致性。以下是实现这些功能的一般步骤: Leader选举: 使用协调...

    03-05-07-zookeeper原理之Leader选举源码分析1

    在第一节课,我们讲到了 zookeeper 的来源,是来自于 google chubby。为了解决在分布式环境下,如何从多个 server 中选举出 maste

    3天全面深入学习zookeeper视频教程

    zookeeper的leader选举 observer角色及其配置 zookeeperAPI连接集群 zookeeper 开源客户端curator介绍 zookeeper四字监控命令 zookeeper图形化的客户端工具(ZooInspector) taokeeper监控工具的使用

    Zookeeper项目实战视频下载

    ZooKeeper是以Fast Paxos算法为基础的,Paxos 算法存在活锁的问题,即当有多个proposer交错提交时,有可能互相排斥导致没有一个proposer能提交成功,而Fast Paxos作了一些优化,通过选举产生一个leader,只有leader...

    zookeeper 例子

    zookeeper 测试例子,里面有一个简单的 zookeeper 日常操作例子,还有以zookeeper而实现的 leader 选举的例子...、分布式锁...

    深入探索Zookeeper:实战应用与高效策略

    本文深入探讨了Zookeeper在分布式系统中的关键应用,特别是在实现分布式锁(包括非公平锁、公平锁和共享锁)、Leader选举和Spring Cloud Zookeeper注册中心等方面的实战应用。通过具体案例,我们理解了Zookeeper的...

    Zookeeper篇.pdf

    1.0 zookeeper 是什么? 1.1 zookeeper 提供了什么? 1.2 zookeeper 文件系统 1.3 zookeeper 的四种类型的 znode ...2.5 zk 是如何选举 Leader 的? 2.6 zk 同步流程 2.7 分布式通知和协调 2.8 zk 的 session 机制

    从Paxos到Zookeeper

    第四部分(第7章)对ZooKeeper的架构设计和实现原理进行了深入分析,包含系统模型、Leader选举、客户端与服务端的工作原理、请求处理,以及服务器角色的工作流程和数据存储等;第五部分(第8章)介绍了ZooKeeper的...

    zookeeper的安装

    ZooKeeper采用一种称为Leader election的选举算法。在整个集群运行过程中,只有一个Leader,其他的都是Follower,如果ZooKeeper集群在运行过程中 Leader出了问题,系统会采用该算法重新选出一个Leader。因此,各个...

    zookeeper 入门到精通视频

    zookeeper 入门到精通视频 包含项目实战 分布式事务 leader 选举 视频

    Zookeeper集群

    1. 概述  大部分分布式应用系统需要一个主控、协调器或者控制器来管理物理分布的子进程,目前,大多数都需要开发私有的协调程序,缺乏一个... Zookeeper集群的启动过程中leader选举是一个非常重要而且复杂的一个环

    zookeeper-3.3.6.tar.gz

    D 表示的是万一集群中的 Leader 服务器挂了,需要一个端口来重新进行选举,选出一个新的 Leader,而这个端口就是用来执行选举时服务器相互通信的端口。如果是伪集群的配置方式,由于 B 都是一样,所以不同的 ...

    Paxos到Zookeeper:分布式一致性原理与实践

    《Paxos到Zookeeper:分布式一致性原理与实践》从分布式一致性的理论出发,向读者简要介绍几种...第四部分(第7章)对ZooKeeper的架构设计和实现原理进行了深入分析,包含系统模型、Leader选举、客户端与服务端的工作原

    zookeeper集群搭建

    当服务启动或者在领导者崩溃后,Zab就进入了恢复模式,当领导者被选举出来,且大多数Server完成了和leader的状态同步以后,恢复模式就结束了。状态同步保证了leader和Server具有相同的系统状态。

Global site tag (gtag.js) - Google Analytics