`
jiang5495
  • 浏览: 89030 次
  • 性别: Icon_minigender_1
  • 来自: 湖南
社区版块
存档分类
最新评论

A*算法入门(转载)

阅读更多
   深入A*算法 
                                 -浅析A*算法在搜索最短路径中的应用

                                                  Sunway
  目 录
  1 A*算法的程序编写原理
  2 用A*算法实现最短路径的搜索


--------------------------------------------------------------------------------

  在这里我将对A*算法的实际应用进行一定的探讨,并且举一个有关A*算法在最短路径搜索的例子。值得注意的是这里并不对A*的基本的概念作介绍,如果你还对A*算法不清楚的话,请看姊妹篇《初识A*算法》。
  这里所举的例子是参考AMIT主页中的一个源程序,你可以在AMIT的站点上下载也可以在我的站点上下载。你使用这个源程序时,应该遵守一定的公约。

1、A*算法的程序编写原理
  我在《初识A*算法》中说过,A*算法是最好优先算法的一种。只是有一些约束条件而已。我们先来看看最好优先算法是如何编写的吧。如图有如下的状态空间:(起始位置是A,目标位置是P,字母后的数字表示节点的估价值)。
  如图有如下的状态空间:(起始位置是A,目标位置是P,字母后的数字表示节点的估价值)


图1 状态空间图

  搜索过程中设置两个表:OPEN和CLOSED。OPEN表保存了所有已生成而未考察的节点,CLOSED表中记录已访问过的节点。算法中有一步是根据估价函数重排OPEN表。这样循环中的每一步只考虑OPEN表中状态最好的节点。具体搜索过程如下:

  1)初始状态:
      OPEN=[A5];            CLOSED=[];
  2)估算A5,取得搜有子节点,并放入OPEN表中;
      OPEN=[B4, C4, D6];        CLOSED=[A5]
  3)估算B4,取得搜有子节点,并放入OPEN表中;
      OPEN=[C4, E5, F5, D6];      CLOSED=[B4, A5]
  4)估算C4;取得搜有子节点,并放入OPEN表中;
      OPEN=[H3, G4, E5, F5, D6]     CLOSED=[C4, B4, A5]
  5)估算H3,取得搜有子节点,并放入OPEN表中;
      OPEN=[O2, P3, G4, E5, F5, D6];  CLOSED=H3C4, B4, A5]
  6)估算O2,取得搜有子节点,并放入OPEN表中;
      OPEN=[P3, G4, E5, F5, D6];    CLOSED=[O2, H3, C4, B4, A5]
  7)估算P3,已得到解;

  看了具体的过程,再看看伪程序吧。算法的伪程序如下:

  Best_First_Search()
  {
    Open = [起始节点];
    Closed = [];
    while ( Open表非空 )
    {
      从Open中取得一个节点X, 并从OPEN表中删除.
      if (X是目标节点)
      {
        求得路径PATH;
        返回路径PATH;
      }
      for (每一个X的子节点Y)
      {
        if( Y不在OPEN表和CLOSE表中 )
        {
          求Y的估价值;
          并将Y插入OPEN表中; //还没有排序
        }
        else if( Y在OPEN表中 )
        {
          if( Y的估价值小于OPEN表的估价值 )
            更新OPEN表中的估价值;
        }
        else //Y在CLOSE表中
        {
          if( Y的估价值小于CLOSE表的估价值 )
          {
            更新CLOSE表中的估价值;
            从CLOSE表中移出节点, 并放入OPEN表中;
          }
        }
        将X节点插入CLOSE表中;
        按照估价值将OPEN表中的节点排序;
      } //end for
    } //end while
  } //end func

  啊!伪程序出来了,写一个源程序应该不是问题了,依葫芦画瓢就可以。A*算法的程序与此是一样的,只要注意估价函数中的g(n)的h(n)约束条件就可以了。不清楚的可以看看《初识A*算法》。好了,我们可以进入另一个重要的话题,用A*算法实现最短路径的搜索。在此之前你最好认真的理解前面的算法。不清楚可以找我。

2、用A*算法实现最短路径的搜索
  在游戏设计中,经常要涉及到最短路径的搜索,现在一个比较好的方法就是用A*算法进行设计。他的好处我们就不用管了,反正就是好!
  注意下面所说的都是以ClassAstar这个程序为蓝本,你可以在这里下载这个程序。这个程序是一个完整的工程。里面带了一个EXE文件。可以先看看。
  先复习一下,A*算法的核心是估价函数f(n),它包括g(n)和h(n)两部分。g(n)是已经走过的代价,h(n)是n到目标的估计代价。在这个例子中g(n)表示在状态空间从起始节点到n节点的 深度,h(n)表示n节点所在地图的位置到目标位置的直线距离。啊!一个是状态空间,一个是实际的地图,不要搞错了。再详细点说,有一个物体A,在地图上的坐标是(xa,ya),A所要到达的目标b的坐标是(xb,yb)。则开始搜索时,设置一个起始节点1,生成八个子节点2 - 9 因为有八个方向。如图:



图2 节点图


  先看搜索主函数:

  void AstarPathfinder::FindPath(int sx, int sy, int dx, int dy)
  {
    NODE *Node, *BestNode;
    int TileNumDest;

    //得到目标位置,作判断用
    TileNumDest = TileNum(sx, sy);

    //生成Open和Closed表
    OPEN=( NODE* )calloc(1,sizeof( NODE ));
    CLOSED=( NODE* )calloc(1,sizeof( NODE ));

    //生成起始节点,并放入Open表中
    Node=( NODE* )calloc(1,sizeof( NODE ));
    Node->g = 0;

    //这是计算h值
    Node->h = (dx-sx)*(dx-sx) + (dy-sy)*(dy-sy); // should really use sqrt().

    //这是计算f值,即估价值
    Node->f = Node->g+Node->h;
    Node->NodeNum = TileNum(dx, dy);
    Node->x = dx;
    Node->y = dy;

    OPEN->NextNode=Node; // make Open List point to first node
    for (;;)
    {
      //从Open表中取得一个估价值最好的节点
      BestNode=ReturnBestNode();

      //如果该节点是目标节点就退出
      if (BestNode->NodeNum == TileNumDest) // if we've found the end, break and finish
        break;
      //否则生成子节点
      GenerateSuccessors(BestNode,sx,sy);
    }
    PATH = BestNode;
  }

  再看看生成子节点函数 GenerateSuccessors:

  void AstarPathfinder::GenerateSuccessors(NODE *BestNode, int dx, int dy)
  {
    int x, y;

    //依次生成八个方向的子节点,简单!
    // Upper-Left
    if ( FreeTile(x=BestNode->x-TILESIZE, y=BestNode->y-TILESIZE) )
      GenerateSucc(BestNode,x,y,dx,dy);
    // Upper
    if ( FreeTile(x=BestNode->x, y=BestNode->y-TILESIZE) )
      GenerateSucc(BestNode,x,y,dx,dy);
    // Upper-Right
    if ( FreeTile(x=BestNode->x+TILESIZE, y=BestNode->y-TILESIZE) )
      GenerateSucc(BestNode,x,y,dx,dy);
    // Right
    if ( FreeTile(x=BestNode->x+TILESIZE, y=BestNode->y) )
      GenerateSucc(BestNode,x,y,dx,dy);
    // Lower-Right
    if ( FreeTile(x=BestNode->x+TILESIZE, y=BestNode->y+TILESIZE) )
      GenerateSucc(BestNode,x,y,dx,dy);
    // Lower
    if ( FreeTile(x=BestNode->x, y=BestNode->y+TILESIZE) )
      GenerateSucc(BestNode,x,y,dx,dy);
    // Lower-Left
    if ( FreeTile(x=BestNode->x-TILESIZE, y=BestNode->y+TILESIZE) )
      GenerateSucc(BestNode,x,y,dx,dy);
    // Left
    if ( FreeTile(x=BestNode->x-TILESIZE, y=BestNode->y) )
      GenerateSucc(BestNode,x,y,dx,dy);
  }

  看看最重要的函数GenerateSucc:

  void AstarPathfinder::GenerateSucc(NODE *BestNode,int x, int y, int dx, int dy)
  {
    int g, TileNumS, c = 0;
    NODE *Old, *Successor;

    //计算子节点的 g 值
    g = BestNode->g+1; // g(Successor)=g(BestNode)+cost of getting from BestNode to Successor
    TileNumS = TileNum(x,y); // identification purposes

    //子节点再Open表中吗?
    if ( (Old=CheckOPEN(TileNumS)) != NULL ) // if equal to NULL then not in OPEN list,
                         // else it returns the Node in Old
    {
      //若在
      for( c = 0; c <8; c++)
        if( BestNode->Child[c] == NULL ) // Add Old to the list of BestNode's Children
                         // (or Successors).
         break;
        BestNode->Child[c] = Old;
        //比较Open表中的估价值和当前的估价值(只要比较g值就可以了)
        if ( g g ) // if our new g value is Parent = BestNode;
          Old->g = g;
          Old->f = g + Old->h;
        }
      }
      else //在Closed表中吗?
        if ( (Old=CheckCLOSED(TileNumS)) != NULL ) // if equal to NULL then not in OPEN list
                              // else it returns the Node in Old
        {
          //若在
          for( c = 0; c<8; c++)
            if ( BestNode->Child[c] == NULL ) // Add Old to the list of BestNode's
                             // Children (or Successors). break;
            BestNode->Child[c] = Old;
            //比较Closed表中的估价值和当前的估价值(只要比较g值就可以了)
            if ( g g ) // if our new g value is Parent = BestNode;
              Old->g = g;
              Old->f = g + Old->h; //再依次更新Old的所有子节点的估价值
              PropagateDown(Old); // Since we changed the g value of Old, we need
                         // to propagate this new value downwards, i.e.
                         // do a Depth-First traversal of the tree!
             }
        }
        else //不在Open表中也不在Close表中
        {
          //生成新的节点
          Successor = ( NODE* )calloc(1,sizeof( NODE ));
          Successor->Parent = BestNode;
          Successor->g = g;
          Successor->h = (x-dx)*(x-dx) + (y-dy)*(y-dy); // should do sqrt(), but since we
                                   don't really
          Successor->f = g+Successor->h; // care about the distance but just which branch
          looks Successor->x = x; // better this should suffice. Anyayz it's faster.
          Successor->y = y;
          Successor->NodeNum = TileNumS;
          //再插入Open表中,同时排序。
          Insert(Successor); // Insert Successor on OPEN list wrt f
          for( c =0; c <8; c++)
            if ( BestNode->Child[c] == NULL ) // Add Old to the list of BestNode's
                              Children (or Successors).
            break;
          BestNode->Child[c] = Successor;
        }
  }

  哈哈。A*算法我懂了。当然,我希望你有这样的感觉。不过我还要再说几句。仔细看看这个程序,你会发现,这个程序和我前面说的伪程序有一些不同,在GenerateSucc函数中,当子节点在Closed表中时,没有将子节点从Closed表中删除并放入Open表中。而是直接的重新的计算该节点的所有子节点的估价值(用PropagateDown函数)。这样可以快一些。另当子节点在Open表和Closed表中时,重新的计算估价值后,没有重新的对Open表中的节点排序,我有些想不通,为什么不排呢?会不会是一个小小的BUG。你知道告诉我好吗?
  好了。主要的内容都讲完了,还是完整仔细的看看源程序吧。希望我所的对你有一点帮助,一点点也可以。如果你对文章中的观点有异议或有更好的解释都告诉我。
分享到:
评论

相关推荐

    A算法和A*算法

    A算法和A*算法详细的讲解 并且有实例的解释 大家可以借鉴

    A*算法解决传教士与野人过河问题(可运行代码)

    A*算法解决传教士与野人过河问题 * 程 序 说 明 * * 功能: 用A*算法求解传教士与野人问题。M=C=5, K=3 * * 说明: * * 本程序按照《人工智能导论》一书所介绍的A*算法求解传教士与野人问题。 * * * * 注意:...

    A星算法 c语言实现 a*算法

    A星算法 用c语言实现 用到了队列 a*算法 A星算法 用c语言实现 用到了队列 a*算法

    【WHUT】*实验报告*《人工智能概论》课内实验:A*算法仿真实验

    A*算法仿真实验 请下载并安装附件(虚拟实验软件-启发式搜索.rar)里的智能搜索算法教学实验系统,然后点击A*算法进行仿真实验。 实验要求如下: 1. 单击"A*算法介绍",回顾A*算法的基本原理。 2. 在"A*算法演示...

    A*算法 matlab版

    A*算法,动态路径规划算法的一种,程序直接放到matlab即可运行。

    a*算法流程图(只是流程图)

    a*算法流程图(只是流程图)A*算法是一种在静态路网中求解最短路径最有效的直接搜索方法,也是解决许多其他搜索问题的有效算法。算法中的距离估算值与实际值越接近,扩展的节点数越少, 搜索速度越快。

    JAVA实现的A*算法

    利用JAVA语言编程实现的经典A*算法,复制到eclipse即可运行

    A*算法A星算法

    对于初学者很好理解的A*算法,内附两个demo帮助理解,和详细的A*代码

    A*算法Java/C++实现

    C++和Java实现的A*算法

    A*算法 A star 算法(matlab)

    A*算法 A star 算法(matlab)版本,可以直接使用,包含路径优化。直接下载即可运行。A*算法 A star 算法(matlab)版本,可以直接使用,包含路径优化。直接下载即可运行。

    用A*算法解决TSP问题

    用A*算法解决TSP问题,用python语言实现。用了一个400节点的数据进行测试

    C#写的A*算法

    C#写的A*算法,支持4发现和八方向,可以选择性绕过斜角。内有详细注释!

    A*算法Matlab实例实现

    A*(A-Star)算法是一种静态路网中求解最短路径最有效的直接搜索方法,也是解决许多搜索问题的有效算法。算法中的距离估算值与实际值越接近,最终搜索速度越快。 本实例主要针对自动驾驶技术当中A*算法的应用现象,...

    A*算法A*算法 A*算法

    A*算法A*算法A*算法A*算法A*算法A*算法A*算法A*算法A*算法A*算法

    A*算法求解重排九宫问题

    用A*算法求解重排九宫问题,将九宫格以3*3矩阵形式设计为动态对象数组类的对象,形式比较新颖。希望对大家了解A*算法,重排九宫,以及c++的动态对象数组类有所帮助。文档包含一个动态对象数组类头文件和一个源文件。

    A*算法入门

    A*算法最为简单易懂的入门资料

    移动机器人路径规划 几种A*算法改进matlab实现

    移动机器人路径规划 几种A*算法改进matlab实现,可直接运行。适用于初学者基于A*算法进行改进,容易理解并上手,

    迷宫问题A*算法

    本科生计算机相关专业 人工智能课程 A*算法解决迷宫问题C++代码 详细注释,易懂

    基于A*算法的最优路径规划系统

    A*算法是一种求解最短路径的有效方法,也是人工智能算法中一种简单的启发式搜索方法。本文介绍了A* 算法的原理及实现机制, 以及在搜索出的结点解空间集中,用A* 算法如何选择最优结点,最终求解出最短路径的过程。

    A*算法求解迷宫寻路问题

    使用A*算法求解迷宫寻路问题,使用python编程,人工智能导论课后实验

Global site tag (gtag.js) - Google Analytics