`
jin8000608172
  • 浏览: 135778 次
  • 性别: Icon_minigender_1
  • 来自: 深圳
社区版块
存档分类
最新评论

ConcurrentHashMap原理分析

阅读更多
引用

http://blog.csdn.net/longyulu/article/details/25054941


集合是编程中最常用的数据结构。而谈到并发,几乎总是离不开集合这类高级数据结构的支持。比如两个线程需要同时访问一个中间临界区(Queue),比如常会用缓存作为外部文件的副本(HashMap)。这篇文章主要分析jdk1.5的3种并发集合类型(concurrent,copyonright,queue)中的ConcurrentHashMap,让我们从原理上细致的了解它们,能够让我们在深度项目开发中获益非浅。
    在tiger之前,我们使用得最多的数据结构之一就是HashMap和Hashtable。大家都知道,HashMap中未进行同步考虑,而Hashtable则使用了synchronized,带来的直接影响就是可选择,我们可以在单线程时使用HashMap提高效率,而多线程时用Hashtable来保证安全。
    当我们享受着jdk带来的便利时同样承受它带来的不幸恶果。通过分析Hashtable就知道,synchronized是针对整张Hash表的,即每次锁住整张表让线程独占,安全的背后是巨大的浪费,慧眼独具的Doug Lee立马拿出了解决方案----ConcurrentHashMap。
    ConcurrentHashMap和Hashtable主要区别就是围绕着锁的粒度以及如何锁。如图

    左边便是Hashtable的实现方式---锁整个hash表;而右边则是ConcurrentHashMap的实现方式---锁桶(或段)。ConcurrentHashMap将hash表分为16个桶(默认值),诸如get,put,remove等常用操作只锁当前需要用到的桶。试想,原来只能一个线程进入,现在却能同时16个写线程进入(写线程才需要锁定,而读线程几乎不受限制,之后会提到),并发性的提升是显而易见的。
    更令人惊讶的是ConcurrentHashMap的读取并发,因为在读取的大多数时候都没有用到锁定,所以读取操作几乎是完全的并发操作,而写操作锁定的粒度又非常细,比起之前又更加快速(这一点在桶更多时表现得更明显些)。只有在求size等操作时才需要锁定整个表。而在迭代时,ConcurrentHashMap使用了不同于传统集合的快速失败迭代器(见之前的文章《JAVA API备忘---集合》)的另一种迭代方式,我们称为弱一致迭代器。在这种迭代方式中,当iterator被创建后集合再发生改变就不再是抛出ConcurrentModificationException,取而代之的是在改变时new新的数据从而不影响原有的数据,iterator完成后再将头指针替换为新的数据,这样iterator线程可以使用原来老的数据,而写线程也可以并发的完成改变,更重要的,这保证了多个线程并发执行的连续性和扩展性,是性能提升的关键。
    接下来,让我们看看ConcurrentHashMap中的几个重要方法,心里知道了实现机制后,使用起来就更加有底气。
    ConcurrentHashMap中主要实体类就是三个:ConcurrentHashMap(整个Hash表),Segment(桶),HashEntry(节点),对应上面的图可以看出之间的关系。
    get方法(请注意,这里分析的方法都是针对桶的,因为ConcurrentHashMap的最大改进就是将粒度细化到了桶上),首先判断了当前桶的数据个数是否为0,为0自然不可能get到什么,只有返回null,这样做避免了不必要的搜索,也用最小的代价避免出错。然后得到头节点(方法将在下面涉及)之后就是根据hash和key逐个判断是否是指定的值,如果是并且值非空就说明找到了,直接返回;程序非常简单,但有一个令人困惑的地方,这句return readValueUnderLock(e)到底是用来干什么的呢?研究它的代码,在锁定之后返回一个值。但这里已经有一句V v = e.value得到了节点的值,这句return readValueUnderLock(e)是否多此一举?事实上,这里完全是为了并发考虑的,这里当v为空时,可能是一个线程正在改变节点,而之前的get操作都未进行锁定,根据bernstein条件,读后写或写后读都会引起数据的不一致,所以这里要对这个e重新上锁再读一遍,以保证得到的是正确值,这里不得不佩服Doug Lee思维的严密性。整个get操作只有很少的情况会锁定,相对于之前的Hashtable,并发是不可避免的啊!
        V get(Object key, int hash) {
            if (count != 0) { // read-volatile
                HashEntry e = getFirst(hash);
                while (e != null) {
                    if (e.hash == hash && key.equals(e.key)) {
                        V v = e.value;
                        if (v != null)
                            return v;
                        return readValueUnderLock(e); // recheck
                    }
                    e = e.next;
                }
            }
            return null;
        }

        V readValueUnderLock(HashEntry e) {
            lock();
            try {
                return e.value;
            } finally {
                unlock();
            }
        }

    put操作一上来就锁定了整个segment,这当然是为了并发的安全,修改数据是不能并发进行的,必须得有个判断是否超限的语句以确保容量不足时能够rehash,而比较难懂的是这句int index = hash & (tab.length - 1),原来segment里面才是真正的hashtable,即每个segment是一个传统意义上的hashtable,如上图,从两者的结构就可以看出区别,这里就是找出需要的entry在table的哪一个位置,之后得到的entry就是这个链的第一个节点,如果e!=null,说明找到了,这是就要替换节点的值(onlyIfAbsent == false),否则,我们需要new一个entry,它的后继是first,而让tab[index]指向它,什么意思呢?实际上就是将这个新entry插入到链头,剩下的就非常容易理解了。
        V put(K key, int hash, V value, boolean onlyIfAbsent) {
            lock();
            try {
                int c = count;
                if (c++ > threshold) // ensure capacity
                    rehash();
                HashEntry[] tab = table;
                int index = hash & (tab.length - 1);
                HashEntry first = (HashEntry) tab[index];
                HashEntry e = first;
                while (e != null && (e.hash != hash || !key.equals(e.key)))
                    e = e.next;
                V oldValue;
                if (e != null) {
                    oldValue = e.value;
                    if (!onlyIfAbsent)
                        e.value = value;
                }
                else {
                    oldValue = null;
                    ++modCount;
                    tab[index] = new HashEntry(key, hash, first, value);
                    count = c; // write-volatile
                }
                return oldValue;
            } finally {
                unlock();
            }
        }

    remove操作非常类似put,但要注意一点区别,中间那个for循环是做什么用的呢?(*号标记)从代码来看,就是将定位之后的所有entry克隆并拼回前面去,但有必要吗?每次删除一个元素就要将那之前的元素克隆一遍?这点其实是由entry的不变性来决定的,仔细观察entry定义,发现除了value,其他所有属性都是用final来修饰的,这意味着在第一次设置了next域之后便不能再改变它,取而代之的是将它之前的节点全都克隆一次。至于entry为什么要设置为不变性,这跟不变性的访问不需要同步从而节省时间有关,关于不变性的更多内容,请参阅之前的文章《线程高级---线程的一些编程技巧》
        V remove(Object key, int hash, Object value) {
            lock();
            try {
                int c = count - 1;
                HashEntry[] tab = table;
                int index = hash & (tab.length - 1);
                HashEntry first = (HashEntry)tab[index];
                HashEntry e = first;
                while (e != null && (e.hash != hash || !key.equals(e.key)))
                    e = e.next;
                V oldValue = null;
                if (e != null) {
                    V v = e.value;
                    if (value == null || value.equals(v)) {
                        oldValue = v;
                        // All entries following removed node can stay
                        // in list, but all preceding ones need to be
                        // cloned.
                        ++modCount;
                        HashEntry newFirst = e.next;
                    *    for (HashEntry p = first; p != e; p = p.next)
                    *        newFirst = new HashEntry(p.key, p.hash,
                                                          newFirst, p.value);
                        tab[index] = newFirst;
                        count = c; // write-volatile
                    }
                }
                return oldValue;
            } finally {
                unlock();
            }
        }

    static final class HashEntry {
        final K key;
        final int hash;
        volatile V value;
        final HashEntry next;
        HashEntry(K key, int hash, HashEntry next, V value) {
            this.key = key;
            this.hash = hash;
            this.next = next;
            this.value = value;
        }
    }

    以上,分析了几个最简单的操作,限于篇幅,这里不再对rehash或iterator等实现进行讨论,有兴趣可以参考src。
    接下来实际上还有一个疑问,ConcurrentHashMap跟HashMap相比较性能到底如何。这在Brian Goetz的文章中已经有过评测http://www.ibm.com/developerworks/cn/java/j-jtp07233/。
分享到:
评论

相关推荐

    程序员面试加薪必备:ConcurrentHashMap底层原理与源码分析深入详解

    程序员面试加薪必备_ConcurrentHashMap底层原理与源码分析深入详解

    ConcurrentHashmap源码

    源码分析见我博文:http://blog.csdn.net/wabiaozia/article/details/50684556

    ConcurrentHashMap思维导图完整版

    分析JDK源代码,探索ConcurrentHashMap高并发的具体实现机制,包括其在JDK中的定义和结构、并发存取、重哈希和跨段操作,并着重剖析了ConcurrentHashMap读操作不需要加锁和分段锁机制的内在奥秘和原理。

    JDK1.8 ConcurrentHashMap的一点理解

    只是都是相通的,当我们了解了ConcurrentHashMap的实现原理以及各个方法的实现机制,我们对于其他的hash类型实现也能快速的理解,今天我们就来通过源码来一点一点的分析下ConcurrentHashMap的实现。 首先我们来看...

    Java多线程和并发知识整理

    3.2 原理分析 3.3 JVM中锁的优化 3.4 Synchronized与Lock 3.5 扩展 四、volatile 详解 4.1 作用 4.2 实现原理 4.3 应用场景 五、final 详解 5.1 基础 5.2 重排序规则 5.3 扩展 六、JUC 6.1 汇总 6.2 ...

    Java并发容器,底层原理深入分析

    ConcurrentHashMapConcurrentHashMap底层具体实现JDK1.7底层实现将数据分为一段一段的存储,然后给每一段数据配一把锁,当一个线程占用锁访问其中一个段数据时,其他段的数据也能被其他线程访问。ConcurrentHashMap...

    ConcurrentHashmaq源码分析.txt

    ConcurrentHashMap理论概述,实现原理,简单的源码分析,put和get的简单学习

    algorithm-study:你好,世界

    :green_apple: :red_apple: :pear: :melon: :avocado: :potato: ...java动态代理实现与原理详细分析 描述动态代理的几种实现方式,分别说出相应的优缺点。 动态代理与cglib实现的区别。 为什么CGlib

    聊聊并发系列文章

    4. 聊聊并发(四)深入分析ConcurrentHashMap 5. 聊聊并发(五)原子操作的实现原理 6. 聊聊并发(六)ConcurrentLinkedQueue的实现原理 7. 聊聊并发(七)Java中的阻塞队列 8. 聊聊并发(八)Fork/Join框架介绍 9. ...

    Java-Interview:此项目为 Java 面试的汇总,多数是一些 Java 基础知识、底层原理、算法详解。也有上层应用设计,其中不乏一些大厂面试真题

    ConcurrentHashMap 的实现原理 线程池原理 深入理解线程通信 交替打印奇偶数 JVM Java 运行时内存划分 类加载机制 OOM 分析 垃圾回收 对象的创建与内存分配 你应该知道的 volatile 关键字 分布式相关 分布式限流 ...

    Java并发包源码分析(JDK1.8)

    Java并发包源码分析(JDK1.8):囊括了java.util.concurrent包中大部分类的源码分析,其中涉及automic包,locks包...对每个类的核心源码进行详细分析,笔记详细,由浅入深,层层深入,带您剖析并发编程原理

    java-interview

    ConcurrentHashMap 的实现原理 线程池原理 深入理解线程通信 交替打印奇偶数 JVM Java 运行时内存划分 类加载机制 OOM 分析 垃圾回收 对象的创建与内存分配 你应该知道的 volatile 关键字 分布式相关 分布式限流 ...

    Java-Interview:https

    ConcurrentHashMap 的实现原理 线程池原理 深入理解线程通信 交替打印奇偶数 JVM Java 运行时内存划分 类加载机制 OOM 分析 垃圾回收 对象的创建与内存分配 你应该知道的 volatile 关键字 分布式相关 分布式限流 ...

    汪文君高并发编程实战视频资源全集

     高并发编程第三阶段11讲 AtomicXXXFieldUpdater源码分析及使用场景分析.mp4  高并发编程第三阶段12讲 sun.misc.Unsafe介绍以及几种Counter方案性能对比.mp4  高并发编程第三阶段13讲 一个JNI程序的编写,通过...

    汪文君高并发编程实战视频资源下载.txt

     高并发编程第三阶段11讲 AtomicXXXFieldUpdater源码分析及使用场景分析.mp4  高并发编程第三阶段12讲 sun.misc.Unsafe介绍以及几种Counter方案性能对比.mp4  高并发编程第三阶段13讲 一个JNI程序的编写,通过...

    积分管理系统java源码-AndroidKnowledgeSystem:Android知识架构体系

    源码分析concurrent包 ConcurrentHashMap CopyOnWriteArrayList BlockingQeque ThreadLocal 反射 Kotlin Kotlin的优势 协程 Android热门技术 代码插桩技术 动态代理 插件化 热修复 日志系统 OKHttp Jetpack LiveData...

    Java并发包讲解

    ## 线程安全-并发容器JUC--原理以及分析 1.arrayList --copyonWriteArraylist 优缺点 2.HashSet,TreeSet -- CopyONWriteArraySet,ConcurrentSkipListSet 3.hashMap , treeMap -- ConcurrentHashMap,...

    Java面试题-并发.docx

    通过对HashMap的不同问题进行深入分析,读者可以全面了解该数据结构的工作原理和使用注意事项。 首先,文档解释了为什么HashMap选择红黑树作为数据结构,而不是其他结构,主要是因为红黑树在处理哈希冲突时具有更快...

    Java面试题-哈希.docx

    通过对HashMap的不同问题进行深入分析,读者可以全面了解该数据结构的工作原理和使用注意事项。 首先,文件解释了为什么HashMap选择红黑树作为数据结构,而不是其他结构,主要是因为红黑树在处理哈希冲突时具有更快...

Global site tag (gtag.js) - Google Analytics