- 浏览: 244656 次
- 性别:
- 来自: 珠海
-
最新评论
-
男人50:
不远啊 写道难道大多程序猿都是这样过来的吗,接着后来有一部分当 ...
刚毕业的时候 -
不远啊:
难道大多程序猿都是这样过来的吗,接着后来有一部分当了老师教着新 ...
刚毕业的时候 -
男人50:
...
ES 与关系型数据库的对比 -
liaodongdakai:
精通并发与Netty网盘地址:https://pan.baid ...
精通netty框架 -
男人50:
knight_black_bob 写道这内容怎么审核的,你好, ...
我从事技术的这些年(第12年)
相关推荐
System.out.println("Published message to topic: " + topicToPublish); ``` 以上就是使用Java MQTT客户端的基本操作。根据实际需求,还可以配置心跳间隔、质量服务质量(QoS)、会话保持时间等参数,以满足不同...
Log.d("MQTT", "Published message to topic '" + topic + "': " + message); } catch (MqttException e) { e.printStackTrace(); } } ``` 8. 最后,别忘了在应用退出时断开连接: ```java public void ...
Serial.print("Published message: "); Serial.println(message); } ``` 5. **应用逻辑**:根据需求,你可以添加应用特定的逻辑,如在收到特定消息时执行操作或定期发送数据。 整个项目中,`esp8266-aws_iot-...
Serial.println("Published: " + message); } ``` 在这个例子中,首先要连接到WiFi网络,然后连接到MQTT服务器。`reconnect()`函数负责处理与服务器的连接,如果连接丢失,它会尝试重新连接。在`loop()`函数中,...
cmd-bat-批处理-脚本-variables.zip
基于python+OpenCV和Mediapipe实现手语手势识别检测项目源码.zip 【项目说明】 1.多数小白下载后,在使用过程,可能会遇到些小问题,若自己解决不了,请及时私信描述你的问题,我会第一时间提供帮助,也可以远程指导 2.项目代码完整可靠,但难度适中,满足一些毕设、课设要求,且属于易上手的优质项目,项目内基本都有说明文档,按照操作即可,遇到困难也可私信交流 3.适用人群:各大计算机相关专业行业的在校学生、高校老师、公司程序员等下载使用 4.特别是那种爱钻研学习的学霸,强烈推荐此项目,可以二次开发提升自己。拿来作毕设、课设直接用也行,不过尽量弄懂项
cmd-bat-批处理-脚本-vcvars140.zip
苹果CMS后台影视微信小程序源码 带视频教程
新型武器装备作战需求论证方法与实践.zip
遗传算法优化BP神经网络(GABP)是一种结合了遗传算法(GA)和BP神经网络的优化预测方法。BP神经网络是一种多层前馈神经网络,常用于模式识别和预测问题,但其容易陷入局部最优。而遗传算法是一种模拟自然选择和遗传机制的全局优化方法,能够有效避免局部最优 。GABP算法通过遗传算法优化BP神经网络的权重和阈值,从而提高网络的学习效率和预测精度 。 种群:遗传算法中个体的集合,每个个体代表一种可能的解决方案。 编码:将解决方案转化为适合遗传操作的形式,如二进制编码。 适应度函数:用于评估个体解的质量,通常与目标函数相反,目标函数值越小,适应度越高。 选择:根据适应度保留优秀个体,常见方法有轮盘赌选择、锦标赛选择等。 交叉:两个父代个体交换部分基因生成子代。 变异:随机改变个体的部分基因,增加种群多样性。 终止条件:当迭代次数或适应度阈值达到预设值时停止算法 。 初始化种群:随机生成一组神经网络参数(权重和阈值)作为初始种群 。 计算适应度:使用神经网络模型进行训练和预测,根据预测误差计算适应度 。 选择操作:根据适应度选择优秀个体 。 交叉操作:对选择的个体进行交叉,生成新的子代个体 。 变异操作:对子代进行随机变异 。 替换操作:用新生成的子代替换掉一部分旧种群 。 重复步骤2-6,直到满足终止条件 。 适应度函数通常以预测误差为基础,误差越小,适应度越高。常用的误差指标包括均方根误差(RMSE)或平均绝对误差(MAE)等 。 GABP代码中包含了适应度函数的定义、种群的生成、选择、交叉、变异以及训练过程。代码注释详尽,便于理解每个步骤的作用 。 GABP算法适用于多种领域,如时间序列预测、经济预测、工程问题的优化等。它特别适合解决多峰优化问题,能够有效提高预测的准确性和稳定性 。
cmd-bat-批处理-脚本-hello world.zip
cmd-bat-批处理-脚本-Messagebox_Cancel_TryAgain_Continue.zip
1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
qwq3 model 4 use for ollama
2025年系统集成项目管理工程师考试下午题精编.doc
内容概要:本文介绍了一种专为六节电池串联设计的模块化SOC主动均衡模型。该模型采用底层双向反激变换器和顶层buck-boost均衡的双重策略,旨在解决电池组中各节电池SOC不一致的问题。通过模块化设计,模型实现了灵活性和扩展性,适用于不同类型的电池组。文章详细介绍了模型的工作原理、设计思路以及仿真实验结果,验证了模型的有效性。 适合人群:从事电池管理系统的研发人员、电力电子工程师、科研工作者。 使用场景及目标:①研究电池组充放电均衡技术;②优化电池管理系统的设计;③作为论文创新和仿真实验的基础。 阅读建议:重点理解双向反激变换器和buck-boost均衡的具体实现方法及其协同工作的机制,结合仿真实验数据进一步验证模型效果。
cmd-bat-批处理-脚本-npx.zip
cmd-bat-批处理-脚本-str3.zip
《Java+SQL Server学生成绩管理系统》是一款融合了Java编程语言与SQL Server数据库技术的软件,专为高校或教育机构设计,用于高效管理学生的考试成绩。它具备数据录入、查询、统计分析等功能,旨在提升教学管理效率。 该系统的核心技术包括:一是Java后端开发。Java承担后端任务,处理HTTP请求、实现业务逻辑以及与数据库交互。项目可能借助Spring框架,利用其依赖注入、AOP等特性,简化开发流程。Spring MVC则助力实现MVC模式,处理Web请求。二是JSP技术。JSP是一种动态网页技术,页面融合HTML、CSS、JavaScript和Java代码,用于呈现用户界面及处理前端简单逻辑。三是SQL Server数据库。作为数据存储后端,SQL Server支持通过SQL语句完成表的创建、数据的增删改查等操作,还可借助存储过程和触发器提升功能与安全性。四是数据库设计。系统数据库设计关键,包含“学生”“课程”“成绩”等表,通过主外键关联数据,如“学生”表与“成绩”表通过学生ID关联,“课程”表与“成绩”表通过课程ID关联。五是B/S架构。采用浏览器/服务器架构,用户经Web浏览器访问系统,计算与数据处理在服务器端完成,降低客户端硬件要求。六是安全性。系统设置身份验证与授权机制,如登录验证,确保信息访问安全。同时,为防范SQL注入等威胁,采用预编译语句或ORM框架处理SQL命令。七是异常处理。Java的异常处理机制可捕获运行时问题,保障系统稳定性与用户体验。八是报表统计功能。系统具备成绩统计功能,如计算平均分、排名、及格率等,常使用聚合函数(SUM、AVG、COUNT等)和GROUP BY语句。九是设计模式。开发中可能运用单例模式、工厂模式等,提升代码可维护性和复用性。十是版本控制。项目可能使用Git等版本控制系统,便于团队协作与代码管理。 该学生成绩管理
cmd-bat-批处理-脚本-prog.zip