在linux操作系统中,有些结构体是非常重要的,而task_struct就是其中之一。在linux系统中,task_struct是对一个进程信息的描述,系统对进程的控制主要也是对这个结构体的修改。或许很多服务器开发者都很清楚怎么查看进程信息,但是并不是每个人都有心了解这些信息的来源。
进程状态:
volatile long state:进程的状态,就是生命周期,-1的时候为不可运行,0执行中(并不是正在执行它,而是他可以执行,毕竟进程是相互抢的),大于0是挂起状态。
进程ID:
pid_t pid:进程ID
pid_t tgid:进程组ID
在Linux系统中,一个线程组中的所有线程使用和该线程组的领头线程(该组中的第一个轻量级进程)相同的PID,并被存放在tgid成员中。只有线程组的领头线程的pid成员才会被设置为与tgid相同的值。注意,getpid()系统调用返回的是当前进程的tgid值而不是pid值。
标记:
unsigned int flags:也可以称作标志位,描述状态的,很多得碰到了才去了解。
进程树:在linux中进程是以树状结构构建的。
struct task_struct { volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ void *stack; atomic_t usage; unsigned int flags; /* per process flags, defined below */ unsigned int ptrace; int lock_depth; /* BKL lock depth */ #ifdef CONFIG_SMP #ifdef __ARCH_WANT_UNLOCKED_CTXSW int oncpu; #endif #endif int prio, static_prio, normal_prio; unsigned int rt_priority; const struct sched_class *sched_class; struct sched_entity se; struct sched_rt_entity rt; #ifdef CONFIG_PREEMPT_NOTIFIERS /* list of struct preempt_notifier: */ struct hlist_head preempt_notifiers; #endif /* * fpu_counter contains the number of consecutive context switches * that the FPU is used. If this is over a threshold, the lazy fpu * saving becomes unlazy to save the trap. This is an unsigned char * so that after 256 times the counter wraps and the behavior turns * lazy again; this to deal with bursty apps that only use FPU for * a short time */ unsigned char fpu_counter; #ifdef CONFIG_BLK_DEV_IO_TRACE unsigned int btrace_seq; #endif unsigned int policy; cpumask_t cpus_allowed; #ifdef CONFIG_TREE_PREEMPT_RCU int rcu_read_lock_nesting; char rcu_read_unlock_special; struct rcu_node *rcu_blocked_node; struct list_head rcu_node_entry; #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) struct sched_info sched_info; #endif struct list_head tasks; struct plist_node pushable_tasks; struct mm_struct *mm, *active_mm; /* task state */ int exit_state; int exit_code, exit_signal; int pdeath_signal; /* The signal sent when the parent dies */ /* ??? */ unsigned int personality; unsigned did_exec:1; unsigned in_execve:1; /* Tell the LSMs that the process is doing an * execve */ unsigned in_iowait:1; /* Revert to default priority/policy when forking */ unsigned sched_reset_on_fork:1; pid_t pid; pid_t tgid; #ifdef CONFIG_CC_STACKPROTECTOR /* Canary value for the -fstack-protector gcc feature */ unsigned long stack_canary; #endif /* * pointers to (original) parent process, youngest child, younger sibling, * older sibling, respectively. (p->father can be replaced with * p->real_parent->pid) */ struct task_struct *real_parent; /* real parent process */ struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */ /* * children/sibling forms the list of my natural children */ struct list_head children; /* list of my children */ struct list_head sibling; /* linkage in my parent's children list */ struct task_struct *group_leader; /* threadgroup leader */ /* * ptraced is the list of tasks this task is using ptrace on. * This includes both natural children and PTRACE_ATTACH targets. * p->ptrace_entry is p's link on the p->parent->ptraced list. */ struct list_head ptraced; struct list_head ptrace_entry; /* PID/PID hash table linkage. */ struct pid_link pids[PIDTYPE_MAX]; struct list_head thread_group; struct completion *vfork_done; /* for vfork() */ int __user *set_child_tid; /* CLONE_CHILD_SETTID */ int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ cputime_t utime, stime, utimescaled, stimescaled; cputime_t gtime; cputime_t prev_utime, prev_stime; unsigned long nvcsw, nivcsw; /* context switch counts */ struct timespec start_time; /* monotonic time */ struct timespec real_start_time; /* boot based time */ /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ unsigned long min_flt, maj_flt; struct task_cputime cputime_expires; struct list_head cpu_timers[3]; /* process credentials */ const struct cred *real_cred; /* objective and real subjective task * credentials (COW) */ const struct cred *cred; /* effective (overridable) subjective task * credentials (COW) */ struct mutex cred_guard_mutex; /* guard against foreign influences on * credential calculations * (notably. ptrace) */ struct cred *replacement_session_keyring; /* for KEYCTL_SESSION_TO_PARENT */ char comm[TASK_COMM_LEN]; /* executable name excluding path - access with [gs]et_task_comm (which lock it with task_lock()) - initialized normally by setup_new_exec */ /* file system info */ int link_count, total_link_count; #ifdef CONFIG_SYSVIPC /* ipc stuff */ struct sysv_sem sysvsem; #endif #ifdef CONFIG_DETECT_HUNG_TASK /* hung task detection */ unsigned long last_switch_count; #endif /* CPU-specific state of this task */ struct thread_struct thread; /* filesystem information */ struct fs_struct *fs; /* open file information */ struct files_struct *files; /* namespaces */ struct nsproxy *nsproxy; /* signal handlers */ struct signal_struct *signal; struct sighand_struct *sighand; sigset_t blocked, real_blocked; sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */ struct sigpending pending; unsigned long sas_ss_sp; size_t sas_ss_size; int (*notifier)(void *priv); void *notifier_data; sigset_t *notifier_mask; struct audit_context *audit_context; #ifdef CONFIG_AUDITSYSCALL uid_t loginuid; unsigned int sessionid; #endif seccomp_t seccomp; #ifdef CONFIG_UTRACE struct utrace *utrace; unsigned long utrace_flags; #endif /* Thread group tracking */ u32 parent_exec_id; u32 self_exec_id; /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, * mempolicy */ spinlock_t alloc_lock; #ifdef CONFIG_GENERIC_HARDIRQS /* IRQ handler threads */ struct irqaction *irqaction; #endif /* Protection of the PI data structures: */ spinlock_t pi_lock; #ifdef CONFIG_RT_MUTEXES /* PI waiters blocked on a rt_mutex held by this task */ struct plist_head pi_waiters; /* Deadlock detection and priority inheritance handling */ struct rt_mutex_waiter *pi_blocked_on; #endif #ifdef CONFIG_DEBUG_MUTEXES /* mutex deadlock detection */ struct mutex_waiter *blocked_on; #endif #ifdef CONFIG_TRACE_IRQFLAGS unsigned int irq_events; int hardirqs_enabled; unsigned long hardirq_enable_ip; unsigned int hardirq_enable_event; unsigned long hardirq_disable_ip; unsigned int hardirq_disable_event; int softirqs_enabled; unsigned long softirq_disable_ip; unsigned int softirq_disable_event; unsigned long softirq_enable_ip; unsigned int softirq_enable_event; int hardirq_context; int softirq_context; #endif #ifdef CONFIG_LOCKDEP # define MAX_LOCK_DEPTH 48UL u64 curr_chain_key; int lockdep_depth; unsigned int lockdep_recursion; struct held_lock held_locks[MAX_LOCK_DEPTH]; gfp_t lockdep_reclaim_gfp; #endif /* journalling filesystem info */ void *journal_info; /* stacked block device info */ struct bio *bio_list, **bio_tail; /* VM state */ struct reclaim_state *reclaim_state; struct backing_dev_info *backing_dev_info; struct io_context *io_context; unsigned long ptrace_message; siginfo_t *last_siginfo; /* For ptrace use. */ struct task_io_accounting ioac; #if defined(CONFIG_TASK_XACCT) u64 acct_rss_mem1; /* accumulated rss usage */ u64 acct_vm_mem1; /* accumulated virtual memory usage */ cputime_t acct_timexpd; /* stime + utime since last update */ #endif #ifdef CONFIG_CPUSETS nodemask_t mems_allowed; /* Protected by alloc_lock */ #ifndef __GENKSYMS__ /* * This does not change the size of the struct_task(2+2+4=4+4) * so the offsets of the remaining fields are unchanged and * therefore the kABI is preserved. Only the kernel uses * cpuset_mem_spread_rotor and cpuset_slab_spread_rotor so * it is safe to change it to use shorts instead of ints. */ unsigned short cpuset_mem_spread_rotor; unsigned short cpuset_slab_spread_rotor; int mems_allowed_change_disable; #else int cpuset_mem_spread_rotor; int cpuset_slab_spread_rotor; #endif #endif #ifdef CONFIG_CGROUPS /* Control Group info protected by css_set_lock */ struct css_set *cgroups; /* cg_list protected by css_set_lock and tsk->alloc_lock */ struct list_head cg_list; #endif #ifdef CONFIG_FUTEX struct robust_list_head __user *robust_list; #ifdef CONFIG_COMPAT struct compat_robust_list_head __user *compat_robust_list; #endif struct list_head pi_state_list; struct futex_pi_state *pi_state_cache; #endif #ifdef CONFIG_PERF_EVENTS #ifndef __GENKSYMS__ void * __reserved_perf__; #else struct perf_event_context *perf_event_ctxp; #endif struct mutex perf_event_mutex; struct list_head perf_event_list; #endif #ifdef CONFIG_NUMA struct mempolicy *mempolicy; /* Protected by alloc_lock */ short il_next; #endif atomic_t fs_excl; /* holding fs exclusive resources */ struct rcu_head rcu; /* * cache last used pipe for splice */ struct pipe_inode_info *splice_pipe; #ifdef CONFIG_TASK_DELAY_ACCT struct task_delay_info *delays; #endif #ifdef CONFIG_FAULT_INJECTION int make_it_fail; #endif struct prop_local_single dirties; #ifdef CONFIG_LATENCYTOP int latency_record_count; struct latency_record latency_record[LT_SAVECOUNT]; #endif /* * time slack values; these are used to round up poll() and * select() etc timeout values. These are in nanoseconds. */ unsigned long timer_slack_ns; unsigned long default_timer_slack_ns; struct list_head *scm_work_list; #ifdef CONFIG_FUNCTION_GRAPH_TRACER /* Index of current stored adress in ret_stack */ int curr_ret_stack; /* Stack of return addresses for return function tracing */ struct ftrace_ret_stack *ret_stack; /* time stamp for last schedule */ unsigned long long ftrace_timestamp; /* * Number of functions that haven't been traced * because of depth overrun. */ atomic_t trace_overrun; /* Pause for the tracing */ atomic_t tracing_graph_pause; #endif #ifdef CONFIG_TRACING /* state flags for use by tracers */ unsigned long trace; /* bitmask of trace recursion */ unsigned long trace_recursion; #endif /* CONFIG_TRACING */ /* reserved for Red Hat */ unsigned long rh_reserved[2]; #ifndef __GENKSYMS__ struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts]; #ifdef CONFIG_CGROUP_MEM_RES_CTLR /* memcg uses this to do batch job */ struct memcg_batch_info { int do_batch; /* incremented when batch uncharge started */ struct mem_cgroup *memcg; /* target memcg of uncharge */ unsigned long bytes; /* uncharged usage */ unsigned long memsw_bytes; /* uncharged mem+swap usage */ } memcg_batch; #endif #endif };
参考:
http://blog.csdn.net/npy_lp/article/details/7292563
相关推荐
### task_struct在内核态堆栈的位置 #### 知识点概述 在深入探讨`task_struct`在内核态堆栈中的位置之前,我们先简要回顾一下`task_struct`的作用及其重要性。`task_struct`是Linux内核中一个非常重要的数据结构,...
深入解析task_struct 结构体的几个字段
在Linux操作系统中,`task_struct`是一个至关重要的数据结构,它代表了系统中的每一个进程。当我们谈论`task_struct`时,实际上是在讨论进程控制块(PCB,Process Control Block),这是理解和操纵进程行为的核心。 ...
task_struct 数据结构 task_struct 数据结构是 Linux 操作系统中每个进程的核心数据结构,负责存储进程的所有信息。它是进程控制的唯一手段,也是最有效的手段。了解 task_struct 结构是理解 Linux 任务调度的关键...
`pid_task(struct pid *pid, enum pid_type type)`函数用于通过`struct pid`和PID类型找到对应的`struct task_struct`。这意味着你可以根据进程ID的类型(如进程ID、会话ID或进程组ID)找到相应的任务实例。 在实际...
Linux进程管理之task_struct结构体详解 Linux操作系统中,进程管理是其中一个非常重要的方面。为了便于管理,Linux使用task_struct结构体来表示一个进程,每个进程都有自己独立的task_struct。在这个结构体里,包含...
在2.4.0版本及之前,`task_struct`与内核态堆栈分配在同一8KB页块中,`task_struct`位于页块底部,堆栈自顶部向下扩展。进程的创建主要通过`do_fork()`函数实现,该函数通过`alloc_task_struct()`宏分配`task_struct...
5. **内核栈和thread_info结构**:在2.6之前的内核版本,`task_struct`直接放在内核栈的底部,而现在则有一个`thread_info`结构,它包含了一个指针指向`task_struct`,并存储了与线程执行相关的状态和计数器。...
struct task_struct *next_task, *prev_task; struct task_struct *next_run, *prev_run; pid_t pid; struct task_struct *p_opptr, *p_pptr, *p_cptr, *p_ysptr, *p_osptr; struct task_struct *pidhash_next;...
- struct task_struct *real_parent、*parent:分别表示创建当前进程的父进程和进程的父进程指针。 - struct list_head children:表示当前进程的子进程链表。 - struct list_head sibling:表示当前进程的兄弟...
2. **分配`task_struct`**:通过`alloc_task_struct`宏为新进程分配`task_struct`,并将其存储在局部变量`tsk`中。 3. **分配`thread_info`**:使用`alloc_thread_info`宏为新进程获取一块空闲内存区,用于存放`...
修改 PCB,即 task_struct 结构,增加相应的内容域,同时处理由于修改了 task_struct 所造成的影响 用修改后的 Linux 0.11 仍然可以启动,可以正常运行 (选做)分析实验 3 的日志体会修改前后系统运行的差别
task_struct *p=new task_struct; p=pcb; for(int i=0;i;i++) { task_struct *q=new task_struct; int tmp; q->pid=i+1; cout请输入第"个进程名:"; cin>>q->pname; loop: cout请输入进程状态(3 为就绪...
2. task_struct的复制:系统调用arch_dup_task_struct来复制task_struct结构体,实际上是通过memcpy来复制父进程的task_struct到新分配的内存中。然后,系统为新的task_struct分配一个新的cred结构体,它包含了进程...
本章节将从 Linux 进程概念、进程控制块 task_struct 结构、Linux 进程的创建、Linux 进程调度等方面进行详细介绍。 Linux 进程概念 Linux 是一个多任务多用户操作系统,每一个进程都具有一定的功能和权限,它们都...
首先,Linux内核中描述进程状态的关键数据结构是`task_struct`。它位于`include/linux/sched.h`头文件中,是进程管理的核心。每一个进程或线程在内核中都对应有一个`task_struct`实例。在这个结构体中,存放着进程的...
随后,它会尝试分配内存以存放新的 task_struct 结构体,并复制父进程的 task_struct 结构体到新进程中。 #### 四、clone_flags 参数的作用 clone_flags 参数用于指定新进程与父进程之间的共享属性。不同的标志位...
在Linux中,进程是由`task_struct`数据结构表示的,它包含了关于进程的所有信息,如进程名称、进程ID(PID)、进程状态以及父进程的引用。`task_struct`结构体是一个非常复杂的结构,包含了大量关于进程的信息,如...
首先,我们关注的是"8_taskstruct"这个文件。在Linux内核中,`task_struct`是一个非常重要的数据结构,它存储了进程或线程的所有状态信息。`task_struct`包含了如进程ID(PID)、父进程ID(PPID)、内存分配信息、上...
struct task_struct *next_task, *prev_task; /* 链入进程队列中的双向指针 */ struct mm_struct *active_mm; /* 运行时的内存管理结构 */ ... }; ``` 三、进程调度算法 Linux内核使用了多种进程调度算法,以...