`
m635674608
  • 浏览: 4937073 次
  • 性别: Icon_minigender_1
  • 来自: 南京
社区版块
存档分类
最新评论

mvcc

 
阅读更多

一、 事务是指对系统进行的一组操作,为了保证系统的完整性,事务需要具有ACID特性,具体如下:
1. 原子性(Atomic)
     一个事务包含多个操作,这些操作要么全部执行,要么全都不执行。实现事务的原子性,要支持回滚操作,在某个操作失败后,回滚到事务执行之前的状态。
     回滚实际上是一个比较高层抽象的概念,大多数DB在实现事务时,是在事务操作的数据快照上进行的(比如,MVCC),并不修改实际的数据,如果有错并不会提交,所以很自然的支持回滚。
     而在其他支持简单事务的系统中,不会在快照上更新,而直接操作实际数据。可以先预演一边所有要执行的操作,如果失败则这些操作不会被执行,通过这种方式很简单的实现了原子性。
2. 一致性(Consistency)
     一致性是指事务使得系统从一个一致的状态转换到另一个一致状态。事务的一致性决定了一个系统设计和实现的复杂度。事务可以不同程度的一致性:
     强一致性:读操作可以立即读到提交的更新操作。
     弱一致性:提交的更新操作,不一定立即会被读操作读到,此种情况会存在一个不一致窗口,指的是读操作可以读到最新值的一段时间。
     最终一致性:是弱一致性的特例。事务更新一份数据,最终一致性保证在没有其他事务更新同样的值的话,最终所有的事务都会读到之前事务更新的最新值。如果没有错误发生,不一致窗口的大小依赖于:通信延迟,系统负载等。
     其他一致性变体还有:
     单调一致性:如果一个进程已经读到一个值,那么后续不会读到更早的值。
     会话一致性:保证客户端和服务器交互的会话过程中,读操作可以读到更新操作后的最新值。
3. 隔离性(Isolation)
     并发事务之间互相影响的程度,比如一个事务会不会读取到另一个未提交的事务修改的数据。在事务并发操作时,可能出现的问题有:
     脏读:事务A修改了一个数据,但未提交,事务B读到了事务A未提交的更新结果,如果事务A提交失败,事务B读到的就是脏数据。
     不可重复读:在同一个事务中,对于同一份数据读取到的结果不一致。比如,事务B在事务A提交前读到的结果,和提交后读到的结果可能不同。不可重复读出现的原因就是事务并发修改记录,要避免这种情况,最简单的方法就是对要修改的记录加锁,这回导致锁竞争加剧,影响性能。另一种方法是通过MVCC可以在无锁的情况下,避免不可重复读。
     幻读:在同一个事务中,同一个查询多次返回的结果不一致。事务A新增了一条记录,事务B在事务A提交前后各执行了一次查询操作,发现后一次比前一次多了一条记录。幻读是由于并发事务增加记录导致的,这个不能像不可重复读通过记录加锁解决,因为对于新增的记录根本无法加锁。需要将事务串行化,才能避免幻读。
     事务的隔离级别从低到高有:
     Read Uncommitted:最低的隔离级别,什么都不需要做,一个事务可以读到另一个事务未提交的结果。所有的并发事务问题都会发生。
     Read Committed:只有在事务提交后,其更新结果才会被其他事务看见。可以解决脏读问题。
     Repeated Read:在一个事务中,对于同一份数据的读取结果总是相同的,无论是否有其他事务对这份数据进行操作,以及这个事务是否提交。可以解决脏读、不可重复读。
     Serialization:事务串行化执行,隔离级别最高,牺牲了系统的并发性。可以解决并发事务的所有问题。
     通常,在工程实践中,为了性能的考虑会对隔离性进行折中。
4. 持久性(Durability)
     事务提交后,对系统的影响是永久的。

二、mvcc

在并发读写数据库时,读操作可能会不一致的数据(脏读)。为了避免这种情况,需要实现数据库的并发访问控制,最简单的方式就是加锁访问。由于,加锁会将读写操作串行化,所以不会出现不一致的状态。但是,读操作会被写操作阻塞,大幅降低读性能。在Java concurrent包中,有copyonwrite系列的类,专门用于优化读远大于写的情况。而其优化的手段就是,在进行写操作时,将数据copy一份,不会影响原有数据,然后进行修改,修改完成后原子替换掉旧的数据,而读操作只会读取原有数据。通过这种方式实现写操作不会阻塞读操作,从而优化读效率。而写操作之间是要互斥的,并且每次写操作都会有一次copy,所以只适合读大于写的情况。

MVCC的原理与copyonwrite类似,全称是Multi-Version Concurrent Control,即多版本并发控制。在MVCC协议下,每个读操作会看到一个一致性的snapshot,并且可以实现非阻塞的读。MVCC允许数据具有多个版本,这个版本可以是时间戳或者是全局递增的事务ID,在同一个时间点,不同的事务看到的数据是不同的。

实现原理: 

------------------------------------------------------------------------------------------> 时间轴

|-------R(T1)-----|

|-----------U(T2)-----------|

如上图,假设有两个并发操作R(T1)和U(T2),T1和T2是事务ID,T1小于T2,系统中包含数据a = 1(T1),R和W的操作如下:

R:read a (T1)

U:a = 2    (T2)

R(读操作)的版本T1表示要读取数据的版本,而之后写操作才会更新版本,读操作不会。在时间轴上,R晚于U,而由于U在R开始之后提交,所以对于R是不可见的。所以,R只会读取T1版本的数据,即a = 1。

由于在update操作提交之前,不能影响已有数据的一致性,所以不会改变旧的数据,update操作会被拆分成insert + delete。需要标记删除旧的数据,insert新的数据。只有update提交之后,才会影响后续的读操作。而对于读操作而且,只能读到在其之前的所有的写操作,正在执行中的写操作对其是不可见的。

上面说了一堆的虚的理论,下面来点干活,看一下MySQL的innodb引擎是如何实现MVCC的。innodb会为每一行添加两个字段,分别表示该行创建的版本删除的版本,填入的是事务的版本号,这个版本号随着事务的创建不断递增。在repeated read的隔离级别(事务的隔离级别请看这篇文章)下,具体各种数据库操作的实现:

select:满足以下两个条件innodb会返回该行数据:(1)该行的创建版本号小于等于当前版本号,用于保证在select操作之前所有的操作已经执行落地。(2)该行的删除版本号大于当前版本或者为空。删除版本号大于当前版本意味着有一个并发事务将该行删除了。

insert:将新插入的行的创建版本号设置为当前系统的版本号。

delete:将要删除的行的删除版本号设置为当前系统的版本号。

update:不执行原地update,而是转换成insert + delete。将旧行的删除版本号设置为当前版本号,并将新行insert同时设置创建版本号为当前版本号。

其中,写操作(insert、delete和update)执行时,需要将系统版本号递增。

由于旧数据并不真正的删除,所以必须对这些数据进行清理,innodb会开启一个后台线程执行清理工作,具体的规则是将删除版本号小于当前系统版本的行删除,这个过程叫做purge。

通过MVCC很好的实现了事务的隔离性,可以达到repeated read级别,要实现serializable还必须加锁

 

 

分享到:
评论

相关推荐

Global site tag (gtag.js) - Google Analytics