`

AtomicInteger

阅读更多
AtomicInteger


一、总结

1.jdk 1.8.0

2.

  • 基于CAS的乐观锁实现
  • 基于JNI调用硬件级别的锁实现原子性操作
  • CAS算法,此算法是由unsafe的底层代码实现,它是一个原子的操作,CAS(V,E,N) V 变量,E expected  预期的旧值,N new 新值,Compare And Swap 比较交换,仅当 V中存放的值与E相等时,才将V赋值为N;否则,不做任何处理
  • 语言层面不做处理,我们将其交给硬件—CPU和内存,利用CPU的多处理能力,实现硬件层面的阻塞,再加上volatile变量的特性即可实现基于原子操作的线程安全。所以说,CAS并不是无阻塞,只是阻塞并非在语言、线程方面,而是在硬件层面,所以无疑这样的操作会更快更高效


二、源码分析

package java.util.concurrent.atomic;
import java.util.function.IntUnaryOperator;
import java.util.function.IntBinaryOperator;
import sun.misc.Unsafe;

/**
 * An {@code int} value that may be updated atomically.  See the
 * {@link java.util.concurrent.atomic} package specification for
 * description of the properties of atomic variables. An
 * {@code AtomicInteger} is used in applications such as atomically
 * incremented counters, and cannot be used as a replacement for an
 * {@link java.lang.Integer}. However, this class does extend
 * {@code Number} to allow uniform access by tools and utilities that
 * deal with numerically-based classes.
 *
 * @since 1.5
 * @author Doug Lea
*/
public class AtomicInteger extends Number implements java.io.Serializable {

    private static final long serialVersionUID = 6214790243416807050L;



  • Number,作用是Integer与其他数据类型之间的转换
  • Serializable,作用是序列化



    // setup to use Unsafe.compareAndSwapInt for updates
    private static final Unsafe unsafe = Unsafe.getUnsafe();
    private static final long valueOffset;

    static {
        try {
            valueOffset = unsafe.objectFieldOffset
                (AtomicInteger.class.getDeclaredField("value"));
        } catch (Exception ex) { throw new Error(ex); }
    }



  • sun.misc.Unsafe的compareAndSwapInt方法获取类字段的偏移地址,进而通过对象的起始地址与偏移量地址可以读取字段的值


    private volatile int value;


  • value是一个volatile变量,在内存中可见,任何线程都不允许对其进行拷贝,因此JVM可以保证任何时刻任何线程总能拿到该变量的最新值。此处value的值,可以在AtomicInteger类初始化的时候传入,也可以留空,留空则自动赋值为0


    /**
     * Creates a new AtomicInteger with the given initial value.
     *
     * @param initialValue the initial value
     */
    public AtomicInteger(int initialValue) {
        value = initialValue;
    }

    /**
     * Creates a new AtomicInteger with initial value {@code 0}.
     */
    public AtomicInteger() {
    }

    /**
     * Gets the current value.
     *
     * @return the current value
     */
    public final int get() {
        return value;
    }

    /**
     * Sets to the given value.
     *
     * @param newValue the new value
     */
    public final void set(int newValue) {
        value = newValue;
    }

    /**
     * Eventually sets to the given value.
     *
     * @param newValue the new value
     * @since 1.6
     */
    public final void lazySet(int newValue) {
        unsafe.putOrderedInt(this, valueOffset, newValue);
    }

    /**
     * Atomically sets to the given value and returns the old value.
     *
     * @param newValue the new value
     * @return the previous value
     */
    public final int getAndSet(int newValue) {
        return unsafe.getAndSetInt(this, valueOffset, newValue);
    }

    /**
     * Atomically sets the value to the given updated value
     * if the current value {@code ==} the expected value.
     *
     * @param expect the expected value
     * @param update the new value
     * @return {@code true} if successful. False return indicates that
     * the actual value was not equal to the expected value.
     */
    public final boolean compareAndSet(int expect, int update) {
        return unsafe.compareAndSwapInt(this, valueOffset, expect, update);
    }

    /**
     * Atomically sets the value to the given updated value
     * if the current value {@code ==} the expected value.
     *
     * <p><a href="package-summary.html#weakCompareAndSet">May fail
     * spuriously and does not provide ordering guarantees</a>, so is
     * only rarely an appropriate alternative to {@code compareAndSet}.
     *
     * @param expect the expected value
     * @param update the new value
     * @return {@code true} if successful
     */
    public final boolean weakCompareAndSet(int expect, int update) {
        return unsafe.compareAndSwapInt(this, valueOffset, expect, update);
    }

    /**
     * Atomically increments by one the current value.
     *
     * @return the previous value
     */
    public final int getAndIncrement() {
        return unsafe.getAndAddInt(this, valueOffset, 1);
    }

    /**
     * Atomically decrements by one the current value.
     *
     * @return the previous value
     */
    public final int getAndDecrement() {
        return unsafe.getAndAddInt(this, valueOffset, -1);
    }

    /**
     * Atomically adds the given value to the current value.
     *
     * @param delta the value to add
     * @return the previous value
     */
    public final int getAndAdd(int delta) {
        return unsafe.getAndAddInt(this, valueOffset, delta);
    }

    /**
     * Atomically increments by one the current value.
     *
     * @return the updated value
     */
    public final int incrementAndGet() {
        return unsafe.getAndAddInt(this, valueOffset, 1) + 1;
    }

    /**
     * Atomically decrements by one the current value.
     *
     * @return the updated value
     */
    public final int decrementAndGet() {
        return unsafe.getAndAddInt(this, valueOffset, -1) - 1;
    }

    /**
     * Atomically adds the given value to the current value.
     *
     * @param delta the value to add
     * @return the updated value
     */
    public final int addAndGet(int delta) {
        return unsafe.getAndAddInt(this, valueOffset, delta) + delta;
    }

    /**
     * Atomically updates the current value with the results of
     * applying the given function, returning the previous value. The
     * function should be side-effect-free, since it may be re-applied
     * when attempted updates fail due to contention among threads.
     *
     * @param updateFunction a side-effect-free function
     * @return the previous value
     * @since 1.8
     */
    public final int getAndUpdate(IntUnaryOperator updateFunction) {
        int prev, next;
        do {
            prev = get();
            next = updateFunction.applyAsInt(prev);
        } while (!compareAndSet(prev, next));
        return prev;
    }

    /**
     * Atomically updates the current value with the results of
     * applying the given function, returning the updated value. The
     * function should be side-effect-free, since it may be re-applied
     * when attempted updates fail due to contention among threads.
     *
     * @param updateFunction a side-effect-free function
     * @return the updated value
     * @since 1.8
     */
    public final int updateAndGet(IntUnaryOperator updateFunction) {
        int prev, next;
        do {
            prev = get();
            next = updateFunction.applyAsInt(prev);
        } while (!compareAndSet(prev, next));
        return next;
    }

    /**
     * Atomically updates the current value with the results of
     * applying the given function to the current and given values,
     * returning the previous value. The function should be
     * side-effect-free, since it may be re-applied when attempted
     * updates fail due to contention among threads.  The function
     * is applied with the current value as its first argument,
     * and the given update as the second argument.
     *
     * @param x the update value
     * @param accumulatorFunction a side-effect-free function of two arguments
     * @return the previous value
     * @since 1.8
     */
    public final int getAndAccumulate(int x,
                                      IntBinaryOperator accumulatorFunction) {
        int prev, next;
        do {
            prev = get();
            next = accumulatorFunction.applyAsInt(prev, x);
        } while (!compareAndSet(prev, next));
        return prev;
    }

    /**
     * Atomically updates the current value with the results of
     * applying the given function to the current and given values,
     * returning the updated value. The function should be
     * side-effect-free, since it may be re-applied when attempted
     * updates fail due to contention among threads.  The function
     * is applied with the current value as its first argument,
     * and the given update as the second argument.
     *
     * @param x the update value
     * @param accumulatorFunction a side-effect-free function of two arguments
     * @return the updated value
     * @since 1.8
     */
    public final int accumulateAndGet(int x,
                                      IntBinaryOperator accumulatorFunction) {
        int prev, next;
        do {
            prev = get();
            next = accumulatorFunction.applyAsInt(prev, x);
        } while (!compareAndSet(prev, next));
        return next;
    }

    /**
     * Returns the String representation of the current value.
     * @return the String representation of the current value
     */
    public String toString() {
        return Integer.toString(get());
    }

    /**
     * Returns the value of this {@code AtomicInteger} as an {@code int}.
     */
    public int intValue() {
        return get();
    }

    /**
     * Returns the value of this {@code AtomicInteger} as a {@code long}
     * after a widening primitive conversion.
     * @jls 5.1.2 Widening Primitive Conversions
     */
    public long longValue() {
        return (long)get();
    }

    /**
     * Returns the value of this {@code AtomicInteger} as a {@code float}
     * after a widening primitive conversion.
     * @jls 5.1.2 Widening Primitive Conversions
     */
    public float floatValue() {
        return (float)get();
    }

    /**
     * Returns the value of this {@code AtomicInteger} as a {@code double}
     * after a widening primitive conversion.
     * @jls 5.1.2 Widening Primitive Conversions
     */
    public double doubleValue() {
        return (double)get();
    }

}



博文参考:
AtomicInteger源码分析
分享到:
评论

相关推荐

    AtomicInteger并发测试

    测试java.util.concurrent.atomic.AtomicInteger的类 与直接使用int做区别

    Java中对AtomicInteger和int值在多线程下递增操作的测试

    主要介绍了Java中对AtomicInteger和int值在多线程下递增操作的测试,本文得出AtomicInteger操作 与 int操作的效率大致相差在50-80倍上下的结论,需要的朋友可以参考下

    ViewPager+AtomicInteger实现广告轮播

    利用ViewPager实现的广告轮播,没有触摸事件的时候可以定时轮播广告,有触摸事件实施触摸事件。自动轮播使用的是线程加AtomicInteger的方式实现。

    AtomicInteger 浅谈

    NULL 博文链接:https://zcmor.iteye.com/blog/1535524

    java并发之AtomicInteger源码分析

    AtomicInteger是java并发包下面提供的原子类,主要操作的是int类型的整型,通过调用底层Unsafe的CAS等方法实现原子操作。下面小编和大家一起学习一下

    Java AtomicInteger类的使用方法详解

    主要介绍了Java AtomicInteger类的使用方法详解,文中有具体实例代码,具有一定参考价值,需要的朋友可以了解下。

    Java AtomicInteger类使用方法实例讲解

    主要介绍了Java AtomicInteger类使用方法实例讲解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

    AtomicInteger的使用,CAS的工作原理

    AtomicInteger atomicInteger = new AtomicInteger(5); atomicInteger.compareAndSet(5, 2020) + \t current data is + atomicInteger.get()) /** * Atomically sets the value to the given updated value * if ...

    AtomicIntegerExample:AtomicInteger示例

    AtomicInteger示例AtomicInteger用于原子增量计数器之类的应用程序。 简短的示例代码: public class AtomicIntegerExample { private final ExecutorService execService = Executors . newFixedThreadPool( 100 );...

    java多线程自增效率比较及原理解析

    在多线程环境下,对于自增操作需要考虑线程安全问题,常见的解决方法包括使用synchronized关键字、AtomicInteger、LongAdder和LongAccumulator等。本文给出了使用这些方法实现自增的代码演示,并通过多线程测试比较...

    使用Java的Memory Model实现一个简单的计数器.txt

    这个代码实现了一个简单的计数器,使用了Java的`AtomicInteger`类来保证多线程环境下的原子性操作。`AtomicInteger`是一个支持原子操作的整数类,它内部使用了CAS(Compare And Swap)算法来实现线程安全的操作。在...

    JAVA初级面试题(release)

    NULL 博文链接:https://it-fan.iteye.com/blog/1183175

    fastjson-1.2.30.zip

    增加对 android 版本序列化的 AtomicInteger/AtomicLong 支持 修改下划线或者相似属性重复时解析结果不对的问题 #1089 反序列化增强对非静态内嵌类的支持,提供更友好的出错信息 #1082 新增反序列化特性 Feature....

    线程基础,线程池,生命周期

    线程基础,线程池,生命周期

    java编发编程:JUC综合讲解

    原子操作是不可再分割的基本操作,JUC 提供了一系列原子操作类,如 AtomicInteger、AtomicLong 等。 4. 同步器(Synchronizers):JUC 中的同步器主要通过 AQS(AbstractQueuedSynchronizer)提供支持。

    Java并发编程相关源码集 包括多任务线程,线程池等.rar

     volatile关键字的非原子性、volatile关键字的使用、AtomicInteger原子性操作、线程安全小例子:多个线程竞争问题、多个线程多个锁问题、创建一个缓存的线程池、多线程使用Vector或者HashTable的示例(简单线程同步...

    JUC多线程学习个人笔记

    原子操作:JUC提供了一些原子操作类,如AtomicInteger、AtomicLong等,可以实现线程安全的原子操作,避免了使用synchronized关键字的性能损耗。 锁机制:JUC提供了Lock接口和Condition接口,可以实现更细粒度的锁...

    java并发工具包详解

    1. java.util.concurrent - Java 并发工具包 2. 阻塞队列 BlockingQueue 3. 数组阻塞队列 ArrayBlockingQueue ...23. 原子性整型 AtomicInteger 24. 原子性长整型 AtomicLong 25. 原子性引用型 AtomicReference

    ActiveMQ_Demo

    AtomicInteger count = new AtomicInteger(); public void init(){ try { connectionFactory = new ActiveMQConnectionFactory(USERNAME,PASSWORD,BROKEN_URL); connection = connectionFactory.create...

    java并发工具包 java.util.concurrent中文版用户指南pdf

    1. java.util.concurrent - Java 并发工具包 2. 阻塞队列 BlockingQueue 3. 数组阻塞队列 ArrayBlockingQueue ...23. 原子性整型 AtomicInteger 24. 原子性长整型 AtomicLong 25. 原子性引用型 AtomicReference

Global site tag (gtag.js) - Google Analytics