`

高中学习的部分算法总结-2

阅读更多

1.数论算法
求两数的最大公约数
function gcd(a,b:integer):integer;
begin
if b=0 then gcd:=a
else gcd:=gcd (b,a mod b);
end ;

求两数的最小公倍数
function lcm(a,b:integer):integer;
begin
if a< b then swap(a,b);
lcm:=a;
while lcm mod b >0 do inc(lcm,a);
end;

素数的求法
A.小范围内判断一个数是否为质数:
function prime (n: integer): Boolean;
var I: integer;
begin
for I:=2 to trunc(sqrt(n)) do
if n mod I=0 then begin
prime:=false; exit;
end;
prime:=true;
end;

B.判断longint范围内的数是否为素数(包含求50000以内的素数表):
procedure getprime;
var
i,j:longint;
p:array[1..50000] of boolean;
begin
fillchar(p,sizeof(p),true);
p[1]:=false;
i:=2;
while i< 50000 do begin
if p then begin
j:=i*2;
while j< 50000 do begin
p[j]:=false;
inc(j,i);
end;
end;
inc(i);
end;
l:=0;
for i:=1 to 50000 do
if p then begin
inc(l);pr[l]:=i;
end;
end;{getprime}

function prime(x:longint):integer;
var i:integer;
begin
prime:=false;
for i:=1 to l do
if pr >=x then break
else if x mod pr=0 then exit;
prime:=true;
end;{prime}

2.

3.

4.求最小生成树
A.Prim算法:
procedure prim(v0:integer);
var
lowcost,closest:array[1..maxn] of integer;
i,j,k,min:integer;
begin
for i:=1 to n do begin
lowcost:=cost[v0,i];
closest:=v0;
end;
for i:=1 to n-1 do begin
{寻找离生成树最近的未加入顶点k}
min:=maxlongint;
for j:=1 to n do
if (lowcost[j]< min) and (lowcost[j]< >0) then begin
min:=lowcost[j];
k:=j;
end;
lowcost[k]:=0; {将顶点k加入生成树}
{生成树中增加一条新的边k到closest[k]}
{修正各点的lowcost和closest值}
for j:=1 to n do
if cost[k,j]< lwocost[j] then begin
lowcost[j]:=cost[k,j];
closest[j]:=k;
end;
end;
end;{prim}

B.Kruskal算法:(贪心)
按权值递增顺序删去图中的边,若不形成回路则将此边加入最小生成树。
function find(v:integer):integer; {返回顶点v所在的集合}
var i:integer;
begin
i:=1;
while (i< =n) and (not v in vset) do inc(i);
if i< =n then find:=i else find:=0;
end;

procedure kruskal;
var
tot,i,j:integer;
begin
for i:=1 to n do vset:=;{初始化定义n个集合,第I个集合包含一个元素I}
p:=n-1; q:=1; tot:=0; {p为尚待加入的边数,q为边集指针}
sort;
{对所有边按权值递增排序,存于e[I]中,e[I].v1与e[I].v2为边I所连接的两个顶点的序号,e[I].len为第I条边的长度}
while p >0 do begin
i:=find(e[q].v1);j:=find(e[q].v2);
if i< >j then begin
inc(tot,e[q].len);
vset:=vset+vset[j];vset[j]:=[];
dec(p);
end;
inc(q);
end;
writeln(tot);
end;

5.最短路径
A.标号法求解单源点最短路径:
var
a:array[1..maxn,1..maxn] of integer;
b:array[1..maxn] of integer; {b指顶点i到源点的最短路径}
mark:array[1..maxn] of boolean;

procedure bhf;
var
best,best_j:integer;
begin
fillchar(mark,sizeof(mark),false);
mark[1]:=true; b[1]:=0;{1为源点}
repeat
best:=0;
for i:=1 to n do
If mark then {对每一个已计算出最短路径的点}
for j:=1 to n do
if (not mark[j]) and (a[i,j] >0) then
if (best=0) or (b+a[i,j]< best) then begin
best:=b+a[i,j]; best_j:=j;
end;
if best >0 then begin
b[best_j]:=best;mark[best_j]:=true;
end;
until best=0;
end;{bhf}

B.Floyed算法求解所有顶点对之间的最短路径:
procedure floyed;
begin
for I:=1 to n do
for j:=1 to n do
if a[I,j] >0 then p[I,j]:=I else p[I,j]:=0; {p[I,j]表示I到j的最短路径上j的前驱结点}
for k:=1 to n do {枚举中间结点}
for i:=1 to n do
for j:=1 to n do
if a[i,k]+a[j,k]< a[i,j] then begin
a[i,j]:=a[i,k]+a[k,j];
p[I,j]:=p[k,j];
end;
end;

C. Dijkstra 算法:
类似标号法,本质为贪心算法。
var
a:array[1..maxn,1..maxn] of integer;
b,pre:array[1..maxn] of integer; {pre指最短路径上I的前驱结点}
mark:array[1..maxn] of boolean;
procedure dijkstra(v0:integer);
begin
fillchar(mark,sizeof(mark),false);
for i:=1 to n do begin
d:=a[v0,i];
if d< >0 then pre:=v0 else pre:=0;
end;
mark[v0]:=true;
repeat {每循环一次加入一个离1集合最近的结点并调整其他结点的参数}
min:=maxint; u:=0; {u记录离1集合最近的结点}
for i:=1 to n do
if (not mark) and (d< min) then begin
u:=i; min:=d;
end;
if u< >0 then begin
mark:=true;
for i:=1 to n do
if (not mark) and (a[u,i]+d< d) then begin
d:=a[u,i]+d;
pre:=u;
end;
end;
until u=0;
end;

D.计算图的传递闭包
Procedure Longlink;
Var
T:array[1..maxn,1..maxn] of boolean;
Begin
Fillchar(t,sizeof(t),false);
For k:=1 to n do
For I:=1 to n do
For j:=1 to n do T[I,j]:=t[I,j] or (t[I,k] and t[k,j]);
End;

6.0-1背包问题(部分背包问题可有贪心法求解:计算Pi/Wi)
数据结构:
w:第i个背包的重量;
p:第i个背包的价值;
(1)0-1背包: 每个背包只能使用一次或有限次(可转化为一次):
A.求最多可放入的重量。
NOIP2001 装箱问题
有一个箱子容量为v(正整数,o≤v≤20000),同时有n个物品(o≤n≤30),每个物品有一个体积 (正整数)。要求从 n 个物品中,任取若千个装入箱内,使箱子的剩余空间为最小。
l 搜索方法
procedure search(k,v:integer); {搜索第k个物品,剩余空间为v}
var i,j:integer;
begin
if v< best then best:=v;
if v-(s[n]-s[k-1]) >=best then exit; {s[n]为前n个物品的重量和}
if k< =n then begin
if v >w[k] then search(k+1,v-w[k]);
search(k+1,v);
end;
end;

l DP
F[I,j]为前i个物品中选择若干个放入使其体积正好为j的标志,为布尔型。
实现:将最优化问题转化为判定性问题
F[I,j]=f[i-1,j-w] (w[I]< =j< =v) 边界:f[0,0]:=true.
For I:=1 to n do
For j:=w[I] to v do F[I,j]:=f[I-1,j-w[I]];
优化:当前状态只与前一阶段状态有关,可降至一维。
F[0]:=true;
For I:=1 to n do begin
F1:=f;
For j:=w[I] to v do
If f[j-w[I]] then f1[j]:=true;
F:=f1;
End;

B.求可以放入的最大价值。
F[I,j]=

C.求恰好装满的情况数。

(2)每个背包可使用任意次:
A.求最多可放入的重量。
状态转移方程为
f[I,j]=max{f[i-w[j]

B.求可以放入的最大价值。
USACO 1.2 Score Inflation
进行一次竞赛,总时间T固定,有若干种可选择的题目,每种题目可选入的数量不限,每种题目有一个ti(解答此题所需的时间)和一个si(解答此题所得的分数),现要选择若干题目,使解这些题的总时间在T以内的前提下,所得的总分最大,求最大的得分。
*易想到:
f[i,j] = max { f [i- k*w[j], j-1] + k*v[j] } (0< =k< = i div w[j])
其中f[i,j]表示容量为i时取前j种背包所能达到的最大值。
*优化:
Begin
FillChar(problem,SizeOf(problem),0);
Assign(Input,''inflate.in'');
Reset(Input);
Readln(M,N);
For i:=1 To N Do
With problem Do
Readln(point,time);
Close(Input);

FillChar(f,SizeOf(f),0);
For i:=1 To M Do
For j:=1 To N Do
If i-problem[j].time >=0 Then
Begin
t:=problem[j].point+f[i-problem[j].time];
If t >f Then f:=t;
End;

Assign(Output,''inflate.out'');
Rewrite(Output);
Writeln(f[M]);
Close(Output);
End.
C.求恰好装满的情况数。
Ahoi2001 Problem2
求自然数n本质不同的质数和的表达式的数目。
思路一,生成每个质数的系数的排列,在一一测试,这是通法。
procedure try(dep:integer);
var i,j:integer;
begin
cal; {此过程计算当前系数的计算结果,now为结果}
if now >n then exit; {剪枝}
if dep=l+1 then begin {生成所有系数}
cal;
if now=n then inc(tot);
exit;
end;
for i:=0 to n div pr[dep] do begin
xs[dep]:=i;
try(dep+1);
xs[dep]:=0;
end;
end;

思路二,递归搜索效率较高
procedure try(dep,rest:integer);
var i,j,x:integer;
begin
if (rest< =0) or (dep=l+1) then begin
if rest=0 then inc(tot);
exit;
end;
for i:=0 to rest div pr[dep] do
try(dep+1,rest-pr[dep]*i);
end;

思路三:可使用动态规划求解
USACO1.2 money system
V个物品,背包容量为n,求放法总数。
转移方程:

Procedure update;
var j,k:integer;
begin
c:=a;
for j:=0 to n do
if a[j] >0 then
for k:=1 to n div now do
if j+now*k< =n then inc(c[j+now*k],a[j]);
a:=c;
end;
{main}
begin
read(now); {读入第一个物品的重量}
i:=0; {a为背包容量为i时的放法总数}
while i< =n do begin
a:=1; inc(i,now); end; {定义第一个物品重的整数倍的重量a值为1,作为初值}
for i:=2 to v do
begin
read(now);
update; {动态更新}
end;
writeln(a[n]);

7.排序算法
A.快速排序:
procedure sort(l,r:integer);
var i,j,mid:integer;
begin
i:=l;j:=r; mid:=a[(l+r) div 2]; {将当前序列在中间位置的数定义为中间数}
repeat
while a< mid do inc(i); {在左半部分寻找比中间数大的数}
while mid< a[j] do dec(j);{在右半部分寻找比中间数小的数}
if i< =j then begin {若找到一组与排序目标不一致的数对则交换它们}
swap(a,a[j]);
inc(i);dec(j); {继续找}
end;
until i >j;
if l< j then sort(l,j); {若未到两个数的边界,则递归搜索左右区间}
if i< r then sort(i,r);
end;{sort}

B.插入排序:
procedure insert_sort(k,m:word); {k为当前要插入的数,m为插入位置的指针}
var i:word; p:0..1;
begin
p:=0;
for i:=m downto 1 do
if k=a then exit;
repeat
If k >a[m] then begin
a[m+1]:=k; p:=1;
end
else begin
a[m+1]:=a[m]; dec(m);
end;
until p=1;
end;{insert_sort}
l 主程序中为:
a[0]:=0;
for I:=1 to n do insert_sort(b[I],I-1);

C.选择排序:
procedure sort;
var i,j,k:integer;
begin
for i:=1 to n-1 do begin
k:=i;
for j:=i+1 to n do
if a[j]< a[k] then k:=j; {找出a[I]..a[n]中最小的数与a[I]作交换}
if k< >i then begin
a[0]:=a[k];a[k]:=a;a:=a[0];
end;
end;
end;

D. 冒泡排序
procedure sort;
var i,j,k:integer;
begin
for i:=n downto 1 do
for j:=1 to i-1 do
if a[j] >a then begin
a[0]:=a;a:=a[j];a[j]:=a[0];
end;
end;
E.堆排序:
procedure sift(i,m:integer);{调整以i为根的子树成为堆,m为结点总数}
var k:integer;
begin
a[0]:=a; k:=2*i;{在完全二叉树中结点i的左孩子为2*i,右孩子为2*i+1}
while k< =m do begin
if (k< m) and (a[k]< a[k+1]) then inc(k);{找出a[k]与a[k+1]中较大值}
if a[0]< a[k] then begin a:=a[k];i:=k;k:=2*i; end
else k:=m+1;
end;
a:=a[0]; {将根放在合适的位置}
end;

procedure heapsort;
var
j:integer;
begin
for j:=n div 2 downto 1 do sift(j,n);
for j:=n downto 2 do begin
swap(a[1],a[j]);
sift(1,j-1);
end;
end;

F. 归并排序
{a为序列表,tmp为辅助数组}
procedure merge(var a:listtype; p,q,r:integer);
{将已排序好的子序列a[p..q]与a[q+1..r]合并为有序的tmp[p..r]}
var I,j,t:integer;
tmp:listtype;
begin
t:=p;i:=p;j:=q+1;{t为tmp指针,I,j分别为左右子序列的指针}
while (t< =r) do begin
if (i< =q){左序列有剩余} and ((j >r) or (a< =a[j])) {满足取左边序列当前元素的要求}
then begin
tmp[t]:=a; inc(i);
end
else begin
tmp[t]:=a[j];inc(j);
end;
inc(t);
end;
for i:=p to r do a:=tmp;
end;{merge}

procedure merge_sort(var a:listtype; p,r: integer); {合并排序a[p..r]}
var q:integer;
begin
if p< >r then begin
q:=(p+r-1) div 2;
merge_sort (a,p,q);
merge_sort (a,q+1,r);
merge (a,p,q,r);
end;
end;
{main}
begin
merge_sort(a,1,n);
end.

G.基数排序
思想:对每个元素按从低位到高位对每一位进行一次排序

8.高精度计算
A.
B.
C.
D.

9.树的遍历顺序转换
A. 已知前序中序求后序
procedure Solve(pre,mid:string);
var i:integer;
begin
if (pre='''') or (mid='''') then exit;
i:=pos(pre[1],mid);
solve(copy(pre,2,i),copy(mid,1,i-1));
solve(copy(pre,i+1,length(pre)-i),copy(mid,i+1,length(mid)-i));
post:=post+pre[1]; {加上根,递归结束后post即为后序遍历}
end;

B.已知中序后序求前序
procedure Solve(mid,post:string);
var i:integer;
begin
if (mid='''') or (post='''') then exit;
i:=pos(post[length(post)],mid);
pre:=pre+post[length(post)]; {加上根,递归结束后pre即为前序遍历}
solve(copy(mid,1,I-1),copy(post,1,I-1));
solve(copy(mid,I+1,length(mid)-I),copy(post,I,length(post)-i));
end;

C.已知前序后序求中序

function ok(s1,s2:string):boolean;
var i,l:integer; p:boolean;
begin
ok:=true;
l:=length(s1);
for i:=1 to l do begin
p:=false;
for j:=1 to l do
if s1=s2[j] then p:=true;
if not p then begin ok:=false;exit;end;
end;
end;

procedure solve(pre,post:string);
var i:integer;
begin
if (pre='''') or (post='''') then exit;
i:=0;
repeat
inc(i);
until ok(copy(pre,2,i),copy(post,1,i));
solve(copy(pre,2,i),copy(post,1,i));
midstr:=midstr+pre[1];
solve(copy(pre,i+2,length(pre)-i-1),copy(post,i+1,length(post)-i-1));
end;

10.求图的弱连通子图(DFS)
procedure dfs ( now,color: integer);
begin
for i:=1 to n do
if a[now,i] and c=0 then begin
c:=color;
dfs(I,color);
end;
end;


11.拓扑排序
寻找一数列,其中任意连续p项之和为正,任意q 项之和为负,若不存在则输出NO.

12.进制转换
A.整数任意正整数进制间的互化

NOIP1996数制转换
设字符串A$的结构为: A$=''mp''
其中m为数字串(长度< =20),而n,p均为1或2位的数字串(其中所表达的内容在2-10之间)
程序要求:从键盘上读入A$后(不用正确性检查),将A$中的数字串m(n进制)以p进制的形式输出.
例如:A$=''48< 10 >8''
其意义为:将10进制数48,转换为8进制数输出.
输出结果:48< 10 >=60< 8 >

B.实数任意正整数进制间的互化
C.负数进制:
NOIP2000
设计一个程序,读入一个十进制数的基数和一个负进制数的基数,并将此十进制数转换为此负 进制下的数:-R∈{-2,-3,-4,....-20}

13.全排列与组合的生成
排列的生成:(1..n)
procedure solve(dep:integer);
var
i:integer;
begin
if dep=n+1 then begin writeln(s);exit; end;
for i:=1 to n do
if not used then begin
s:=s+chr(i+ord(''0''));used:=true;
solve(dep+1);
s:=copy(s,1,length(s)-1); used:=false;
end;
end;
组合的生成(1..n中选取k个数的所有方案)
procedure solve(dep,pre:integer);
var
i:integer;
begin
if dep=k+1 then begin writeln(s);exit; end;
for i:=1 to n do
if (not used) and (i >pre) then begin
s:=s+chr(i+ord(''0''));used:=true;
solve(dep+1,i);
s:=copy(s,1,length(s)-1); used:=false;
end;
end;

14 递推关系
计算字串序号模型
USACO1.2.5 StringSobits
长度为N (N< =31)的01串中1的个数小于等于L的串组成的集合中找出按大小排序后的第I个01串。

数字划分模型
*NOIP2001数的划分
将整数n分成k份,且每份不能为空,任意两种分法不能相同(不考虑顺序)。
d[0,0]:=1;
for p:=1 to n do
for i:=p to n do
for j:=k downto 1 do inc(d[i,j],d[i-p,j-1]);
writeln(d[n,k]);

*变形1:考虑顺序
d[ i, j] : = d [ i-k, j-1] (k=1..i)
*变形2:若分解出来的每个数均有一个上限m
d[ i, j] : = d [ i-k, j-1] (k=1..m)

15.算符优先法求解表达式求值问题
const maxn=50;
var
s1:array[1..maxn] of integer; {s1为数字栈}
s2:array[1..maxn] of char; {s2为算符栈}
t1,t2:integer; {栈顶指针}

procedure calcu;
var
x1,x2,x:integer;
p:char;
begin
p:=s2[t2]; dec(t2);
x2:=s1[t1]; dec(t1);
x1:=s1[t1]; dec(t1);
case p of
''+'':x:=x1+x2;
''-'':x:=x1-x2;
''*'':x:=x1*x2;
''/'':x:=x1 div 2;
end;
inc(t1);s1[t1]:=x;
end;

procedure work;
var c:char;v:integer;
begin
t1:=0;t2:=0;
read(c);
while c< >'';'' do
case c of
''+'',''-'': begin
while (t2 >0) and (s2[t2]< >''('') do calcu;
inc(t2);s2[t2]:=c;
read(c);
end ;
''*'',''/'':begin
if (t2 >0) and ((s2[t2]=''*'') or (s2[t2]=''/'')) then calcu;
inc(t2);s2[t2]:=c;
read(c);
end;
''('':begin inc(t2); s2[t2]:=c; read(c); end;
'')'':begin
while s2[t2]< >''('' do calcu;
dec(t2); read(c);
end;
''0''..''9'':begin
v:=0;
repeat
v:=10*v+ord(c)-ord(''0'');
read(c);
until (c< ''0'') or (c >''9'');
inc(t1); s1[t1]:=v;
end;
end;
while t2 >0 do calcu;
writeln(s1[t1]);
end;

16.查找算法
折半查找
function binsearch(k:keytype):integer;
var low,hig,mid:integer;
begin
low:=1;hig:=n;
mid:=(low+hig) div 2;
while (a[mid].key< >k) and (low< =hig) do begin
if a[mid].key >k then hig:=mid-1
else low:=mid+1;
mid:=(low+hig) div 2;
end;
if low >hig then mid:=0;
binsearch:=mid;
end;

树形查找
二叉排序树:每个结点的值都大于其左子树任一结点的值而小于其右子树任一结点的值。
查找
function treesrh(k:keytype):pointer;
var q:pointer;
begin
q:=root;
while (q< >nil) and (q^.key< >k) do
if k< q^.key then q:=q^.left
else q:=q^.right;
treesrh:=q;
end;

17.KMP算法

18.贪心
*会议问题
(1) n个活动每个活动有一个开始时间和一个结束时间,任一时刻仅一项活动进行,求满足活动数最多的情况。
解:按每项活动的结束时间进行排序,排在前面的优先满足。

(2)会议室空闲时间最少。

(3)每个客户有一个愿付的租金,求最大利润。

(4)共R间会议室,第i个客户需使用i间会议室,费用相同,求最大利润。

附录1 常用技巧
1.带权中位数
我国蒙古大草原上有N(N是不大于100的自然数)个牧民定居点P1(X1,Y1)、P2(X2,Y2)、 …Pn(Xn,Yn),相应地有关权重为Wi,现在要求你在大草原上找一点P(Xp,Yp),使P点到任 一点Pi的距离Di与Wi之积之和为最小。   
   即求 D=W1*D1+W2*D2+…+Wi*Di+…+Wn*Dn 有最小值   
结论:对x与y两个方向分别求解带权中位数,转化为一维。
设最佳点p为点k,则点k满足:
令W为点k到其余各点的带权距离之和,则
sigema( i=1 to k-1) Wi*Di < = W/2
sigema( i=k+1 to n) Wi*Di < = W/2
同时满足上述两式的点k即为带权中位数。

2.求一序列中连续子序列的最大和
begin
maxsum:=-maxlongint;
sum:=0;
for i:=1 to n do begin
inc(sum,data);
if sum >maxsum then maxsum:=sum;
if sum< 0 then sum:=0;
end;
writeln(maxsum);
end;

3.

附录2 数据结构相关操作
1.链表的定位函数loc(I:integer):pointer; {寻找链表中的第I个结点的指针}
procedure loc(L:linklist; I:integer):pointer;
var p:pointer;
j:integer;
begin
p:=L.head; j:=0;
if (I >=1) and (I< =L.len) then
while j< I do begin p:=p^.next; inc(j); end;
loc:=p;
end;

2.单链表的插入操作
procedure insert(L:linklist; I:integer; x:datatype);
var p,q:pointer;
begin
p:=loc(L,I);
new(q);
q^.data:=x;
q^.next:=p^.next;
p^.next:=q;
inc(L.len);
end;

3.单链表的删除操作
procedure delete(L:linklist; I:integer);
var p,q:pointer;
begin
p:=loc(L,I-1);
q:=p^.next;
p^.next:=q^.next;
dispose(q);
dec(L.len);
end;

4.双链表的插入操作(插入新结点q)
p:=loc(L,I);
new(q);
q^.data:=x;
q^.pre:=p;
q^.next:=p^.next;
p^.next:=q;
q^.next^.pre:=q;

5.双链表的删除操作
p:=loc(L,I); {p为要删除的结点}
p^.pre^.next:=p^.next;
p^.next^.pre:=p^.pre;
dispose(p);

分享到:
评论

相关推荐

    大数据-算法-算法动画在高中算法教学中的应用研究.pdf

    论文最后对研究进行了总结,指出其创新点在于将算法动画引入高中教学,弥补了传统教学方法的不足,但同时也承认由于时间和资源的限制,尚未进行长期系统的实证性验证。教学实验是一个持续的、循环的过程,需要不断...

    大数据-算法-样例学习中的认知负荷与自我解释对高中数学学习的影响.pdf

    一个重要的教育领域是利用大数据和算法来改进学习过程,特别是在高中数学的学习中。"大数据-算法-样例学习中的认知负荷与自我解释对高中数学学习的影响"这一研究着重探讨了如何通过样例学习策略和认知负荷理论来优化...

    大数据-算法-提高高中数学后进生推理能力的研究.pdf

    总结来说,这篇论文为提高高中数学后进生的推理能力提供了新的视角,强调了大数据和算法在教育中的作用,以及改变传统教学方式、关注学生个体差异的重要性。通过科学的方法和策略,有望帮助这部分学生突破学习障碍,...

    高中数学必修三算法初步复习总结(含答案).docx

    本复习总结涵盖了算法的基本概念、程序框图的逻辑结构、基本语句以及算法的应用实例。 1. **算法的概念**: - **有限性**:算法执行的步骤有限,不会无限进行。 - **确定性**:每一步操作清晰明确,没有歧义。 -...

    大数据-算法-现代教育技术条件下高中数学教.pdf

    总结起来,大数据和算法为高中数学教育带来了革命性的变革,它们为教师提供了更科学的教学工具,为学生创造了更个性化的学习环境。然而,合理运用这些技术,结合传统教学优势,才能真正实现教育的现代化,提高教学...

    2015高中数学 1.3算法案例总结 新人教A版必修3

    在高中数学的学习中,算法是重要的组成部分,尤其在新人教A版必修3中,算法案例的总结有助于理解和掌握计算技巧。本文主要讨论了三种不同的算法:辗转相除法、更相减损术以及秦九韶算法。 辗转相除法,也称欧几里得...

    大数据-算法-渝中区中职学生数学学习现状调查研究.pdf

    总结来说,这篇研究利用大数据和算法深入剖析了渝中区职业高中的数学学习问题,提出以学生为中心的个性化教学和注重非智力因素培养的教育理念,强调了职业教育数学教学评价的改革,以及基础教育公平性的探讨。...

    大数据-算法-高中数学核心概念教学的理论与实践研究.pdf

    《大数据-算法-高中数学核心概念教学的理论与实践研究》这一主题涵盖了多个关键知识点,主要探讨了在高中数学教育中如何有效地教授大数据背景下的算法和核心数学概念。以下是这些知识点的详细阐述: 首先,数学核心...

    常用数据挖掘算法总结及Python实现(含标签)

    本案例将通过对泰坦尼克号乘客数据集的分析,探索乘客生存率的影响因素,并利用多种机器学习算法进行预测。 #### 案例二 Analysis for airplane crashes since 1908 本案例将分析自1908年以来的飞机坠毁事故数据,...

    常用数据挖掘算法总结及Python实现

    掌握概率论的基本概念对理解和应用机器学习算法至关重要。 ##### 1.1.1 基本概念 - **样本空间**: 在任何随机实验中,所有可能结果的集合被称为样本空间,用符号S表示。样本空间中的每个元素被称为样本点。 ...

    高中数学必修三算法初步习题.pdf

    由于提供的文件内容是以OCR扫描的文本片段形式出现,这些片段包含了不同的算法习题和部分解题步骤。但它们并不是直接关联的,也没有给出具体的算法主题,因此我会基于这些片段提供的信息,尝试提取和构建出相关算法...

    最全高中数学知识点总结.doc

    高中数学知识点总结 高中数学知识点总结包括必修课程和选修课程两部分。必修课程由五个模块组成,分别是...高中数学知识点总结是高中学生必须学习的基本知识,涵盖了高中阶段传统的数学基础知识和基本技能的主要部分。

    高中信息技术会考算法与程序设计操作题-PPT.ppt

    高中信息技术会考中的算法与程序设计部分是考查学生编程基础能力的重要环节。这部分试题通常包括算法理解、程序分析以及代码实现等内容,旨在检测考生是否掌握了基本的数据结构、算法逻辑以及编程技能。本次解析将...

    高中数学必修三秦九韶算法PPT学习教案.pptx

    在高中数学必修三中,它是重要的一部分,旨在简化计算过程,尤其对于计算机科学和数学领域来说,这种算法具有很高的实用价值。 1. **辗转相除法与更相减损术**: - **辗转相除法**(也称为欧几里得算法)是求两个...

Global site tag (gtag.js) - Google Analytics