`
singleant
  • 浏览: 375106 次
  • 性别: Icon_minigender_1
  • 来自: 杭州
社区版块
存档分类
最新评论

【java并发】juc高级锁机制探讨

阅读更多

 

 

最近在看一些juc相关的设计和源码,接上文 【java并发】基于JUC CAS原理,自己实现简单独占锁

本文探讨一下juc里面提供的一些高级锁机制和基本原理。

 

JUC高级锁机制简介

Juc 提供了高级锁的一些特性和应用,如:

ReentrantLock :和 synchronized 具有差不多的语义,独占锁,同时只有一个线程能获得锁。

ReentrantReadWriteLock :读写锁。读允许共享,写独占。适用于读频繁的场景。

CountDownLatch : 闭锁。使用场景类似比赛鸣枪,在没有鸣枪之前所有的运动员 ( 线程 ) 都必须等待。说白了就是使用于一个或多个线程等待某一个条件成立了,触发运行。

Semaphore :信号量。使用场景类似通行证,通行证数量有限,拿到证的才能通行。

CyclicBarrier : 周期障碍。语义上和 CountDownLatch 有点类似,只有几个线程打到一个共同的状态之后,触发后续动作继续。不同在于 1. 达到共同状态后,可以指定一个后续触发的线程对象。 2. 周期性意味着可以周期运行。

FutureTask :带有返回值的异步执行。

至于各种锁机制使用场景这里不赘述,后面还有机会加一些例子。

以上不同的锁机制和使用场景,不管我们我们叫锁、闭锁、信号量等等。抽象之后都有一种共同的语义:

多线程并发的执行,之间通过某种 共享 状态来同步,只有当状态满足 xxxx 条件,才能触发线程执行 xxxx

这个共同的语义可以称之为同步器。可以认为以上所有的锁机制都可以基于同步器定制来实现的。

如果要实现一个特定场景的锁来同步线程的执行,其实并不难,如上文 【java并发】基于JUC CAS原理,自己实现简单独占锁 而juc里的思想是 将这些场景抽象出来的语义通过统一的同步框架来支持。

juc 里所有的这些锁机制都是基于 AQS AbstractQueuedSynchronizer )框架上构建的。下面简单介绍下 AQS AbstractQueuedSynchronizer )。 可以参考Doug Lea的论文The java.util.concurrent Synchronizer Framework

 

AQS框架 

AbstractQueuedSynchronizer 是一个抽象类,里面定义了同步器的基本框架,实现了基本的结构功能。只留有状态条件的维护由具体同步器根据具体场景来定制,如上面提到的 ReentrantLock RetrantReadWriteLock和CountDownLatch 等等。

一个同步器至少需要包含两个功能:

1.       获取同步状态

如果允许,则获取锁,如果不允许就阻塞线程,直到同步状态允许获取。

2.       释放同步状态

修改同步状态,并且唤醒等待线程。

根据作者论文, aqs 同步机制同时考虑了如下需求:

1.       独占锁和共享锁两种机制。

2.       线程阻塞后,如果需要取消,需要支持中断。

3.       线程阻塞后,如果有超时要求,应该支持超时后中断的机制。

 

实现涉及基本技术原理  

1.       状态位   

提供 volatile 变量 state;  用于同步线程之间的共享状态。通过 CAS volatile 保证其原子性和可见性。对应源码里的定义:

    /**
     * 同步状态
     */
    private volatile int state;

    /**
     *cas
     */
    protected final boolean compareAndSetState(int expect, int update) {
        // See below for intrinsics setup to support this
        return unsafe.compareAndSwapInt(this, stateOffset, expect, update);
    }
 

2.       线程阻塞和唤醒

有别于wait和notiry。这里利用 jdk1.5 开始提供的 LockSupport.park() LockSupport.unpark() 的本地方法实现,实现线程的阻塞和唤醒。

3.       阻塞线程节点队列 CHL Node queue

根据论文里描述, AQS 里将阻塞线程封装到一个内部类 Node 里。并维护一个 CHL Node FIFO 队列。 CHL 队列是一个非阻塞的 FIFO 队列,也就是说往里面插入或移除一个节点的时候,在并发条件下不会阻塞,而是通过自旋锁和 CAS 保证节点插入和移除的原子性。实现无锁且快速的插入。关于非阻塞算法可以参考  Java 理论与实践: 非阻塞算法简介 。CHL队列对应代码如下:

 

     /**
     * CHL头节点
     */ 
   private transient volatile Node head;
    /**
     * CHL尾节点
     */
    private transient volatile Node tail;

  Node节点是对Thread的一个封装,结构大概如下:

    static final class Node {
        /** 代表线程已经被取消*/
        static final int CANCELLED =  1;
        /** 代表后续节点需要唤醒 */
        static final int SIGNAL    = -1;
        /** 代表线程在等待某一条件/
        static final int CONDITION = -2;
        /** 标记是共享模式*/
        static final Node SHARED = new Node();
        /** 标记是独占模式*/
        static final Node EXCLUSIVE = null;

        /**
         * 状态位 ,分别可以使CANCELLED、SINGNAL、CONDITION、0
         */
        volatile int waitStatus;

        /**
         * 前置节点
         */
        volatile Node prev;

        /**
         * 后续节点
         */
        volatile Node next;

        /**
         * 节点代表的线程
         */
        volatile Thread thread;

        /**
         *连接到等待condition的下一个节点
         */
        Node nextWaiter;

    }
 

 

 

AQS 源码

 

AQS实现了一个同步器的基本结构,下面以独占锁和非独占锁区分来看看 AQS 的几个主要方法:

独占模式

独占获取: tryAcquire 本身不会阻塞线程,如果返回 true 成功就继续,如果返回 false 那么就阻塞线程并加入阻塞队列。

 

    public final void acquire(int arg) {

        if (!tryAcquire(arg) &&

            acquireQueued(addWaiter(Node.EXCLUSIVE), arg))//获取失败,则加入等待队列

            selfInterrupt();

} 
 


 

独占且可中断模式获取:支持中断取消

public final void acquireInterruptibly(int arg) throws InterruptedException {

        if (Thread.interrupted())
            throw new InterruptedException();
        if (!tryAcquire(arg))

            doAcquireInterruptibly(arg);

    } 
 

独占且支持超时模式获取: 带有超时时间,如果经过超时时间则会退出。

 

    public final boolean tryAcquireNanos(int arg, long nanosTimeout) throws InterruptedException {

         if (Thread.interrupted())

             throw new InterruptedException();

         return tryAcquire(arg) ||

             doAcquireNanos(arg, nanosTimeout);

}
 

 

独占模式释放:释放成功会唤醒后续节点

    public final boolean release(int arg) {
        if (tryRelease(arg)) {
            Node h = head;
            if (h != null && h.waitStatus != 0)
                unparkSuccessor(h);
            return true;
        }
        return false;
    }
 

共享模式

 

共享模式获取

 

    public final void acquireShared(int arg) {

        if (tryAcquireShared(arg) < 0)

            doAcquireShared(arg);

}

 

  可中断模式共享获取

  

public final void acquireSharedInterruptibly(int arg) throws InterruptedException {
        if (Thread.interrupted())
            throw new InterruptedException();
        if (tryAcquireShared(arg) < 0)
            doAcquireSharedInterruptibly(arg);
    } 

  

共享模式带定时获取

 

    public final boolean tryAcquireSharedNanos(int arg, long nanosTimeout) throws InterruptedException {
         if (Thread.interrupted())
             throw new InterruptedException();
         return tryAcquireShared(arg) >= 0 ||
             doAcquireSharedNanos(arg, nanosTimeout);
    } 

 

共享锁释放

  

public final boolean releaseShared(int arg) {
        if (tryReleaseShared(arg)) {
            doReleaseShared();
            return true;
        }
        return false;
    } 
 

 

 

注意以上框架只定义了一个同步器的基本结构框架,的基本方法里依赖的 tryAcquire tryRelease tryAcquireShared tryReleaseShared 四个方法在 AQS 里没有实现,这四个方法不会涉及线程阻塞,而是由各自不同的使用场景根据情况来定制:

 

 

    protected boolean tryAcquire(int arg) {
        throw new UnsupportedOperationException();
    }
    protected boolean tryRelease(int arg) {
        throw new UnsupportedOperationException();
    }
    protected int tryAcquireShared(int arg) {
        throw new UnsupportedOperationException();

    }
    protected boolean tryReleaseShared(int arg) {
        throw new UnsupportedOperationException();
    }

 

从以上源码可以看出AQS实现基本的功能:

AQS虽然实现了acquire,和release方法是可能阻塞的,但是里面调用的tryAcquire和tryRelease是由子类来定制的且是不阻塞的可。以认为同步状态的维护、获取、释放动作是由子类实现的功能,而动作成功与否的后续行为时有AQS框架来实现。所以可以认为同步器实现了一下功能:

1.同步器基本范式、结构

2.状态获取、释放成功或失败的后续行为,如线程的阻塞、唤醒机制

3.线程阻塞队列的维护

 

状态获取、释放动作本身是由子类来定义的。

 

 

还有以下一些私有方法,用于辅助完成以上的功能:

final boolean acquireQueued(final Node node, int arg) :申请队列

private Node enq(final Node node) : 入队

private Node addWaiter(Node mode) :以mode创建创建节点,并加入到队列

private void unparkSuccessor(Node node) 唤醒节点的后续节点,如果存在的话。

private void doReleaseShared() :释放共享锁

private void setHeadAndPropagate(Node node, int propagate):设置头,并且如果是共享模式且propagate大于0,则唤醒后续节点。

private void cancelAcquire(Node node) :取消正在获取的节点

private static void selfInterrupt() :自我中断

private final boolean parkAndCheckInterrupt() park 并判断线程是否中断

 

从源码可以看出AQS实现基本的功能:

1.同步器基本范式、结构

2.线程的阻塞、唤醒机制

3.线程阻塞队列的维护

 

AQS虽然实现了acquire,和release方法,但是里面调用的tryAcquire和tryRelease是由子类来定制的。可以认为同步状态的维护、获取、释放动作是由子类实现的功能,而动作成功与否的后续行为时有AQS框架来实现。

 

ReentrantLock原理

有了AQS基础,下面来看ReentrantLock的基本原理:

ReentrantLock原理

由于同步器里已经定义了基本的结构,包括获取、释放、和阻塞队列维护和管理等。ReentrantLock是一个独占互斥锁,里只需要实现TryAcquire、TryRelease等方法,告诉同步器是否获取和释放状态成功。其他的后续行为都由AQS框架完成。由于ReentrantLock是一个可重入的独占锁,所以同步器状态可以直接根据是否==0来判断是否可用。

ReentrantLock主要提供lock和unlcok两个方法。

而lock和unlock正是基于AQS的一个子类同步器来实现。里面sync同步器有两种实现,一种是公平锁,一种是非公平锁。默认是非公平锁,看看非公平锁实现tryAcquire

           final boolean nonfairTryAcquire(int acquires) {
            final Thread current = Thread.currentThread();
            int c = getState();
            if (c == 0) {//如果状态位为0,那么尝试获取
                if (compareAndSetState(0, acquires)) {//基于CAS获取和修改状态
                    setExclusiveOwnerThread(current);//成功则设置当前线程为独占执行线程
                    return true;
                }
            }
            else if (current == getExclusiveOwnerThread()) {//当前线程已是执行线程
                int nextc = c + acquires;//累加
                if (nextc < 0) // overflow
                    throw new Error("Maximum lock count exceeded");
                setState(nextc);
                return true;
            }
            return false;//其他情况下代表获取失败
        }
 

再看看公平锁的tryAcquire

 

 

            protected final boolean tryAcquire(int acquires) {
            final Thread current = Thread.currentThread();
            int c = getState();
            if (c == 0) {
                if (isFirst(current) &&
                    compareAndSetState(0, acquires)) {//判断是否是第一个线程,是的话才尝试获取锁
                    setExclusiveOwnerThread(current);
                    return true;
                }
            }
            else if (current == getExclusiveOwnerThread()) {
                int nextc = c + acquires;
                if (nextc < 0)
                    throw new Error("Maximum lock count exceeded");
                setState(nextc);
                return true;
            }
            return false;
        }

 可以看看 非公平锁的不会根据FIFO,而公平锁会判断是否是第一个线程,根据FIFO来执行。

 

 

 

 

参考文献:

The java.util.concurrent Synchronizer Framework

  Java 理论与实践: 非阻塞算法简介

《深入浅出 Java Concurrency》目录

2
1
分享到:
评论
1 楼 demoxshiroki 2015-04-03  
AQS是不是少讲了 CondtionObject

相关推荐

Global site tag (gtag.js) - Google Analytics