`
wei1.z
  • 浏览: 3855 次
  • 性别: Icon_minigender_1
  • 来自: 北京
社区版块
存档分类
最新评论

Integer的源码分析

 
阅读更多

Integer的源码

 

/*

 * Copyright (c) 1994, 2010, Oracle and/or its affiliates. All rights reserved.

 * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.

 */

 

package java.lang;

 

import java.util.Properties;

 

/**

 * The {@code Integer} class wraps a value of the primitive type

 * {@code int} in an object. An object of type {@code Integer}

 * contains a single field whose type is {@code int}.

 *

 * <p>In addition, this class provides several methods for converting

 * an {@code int} to a {@code String} and a {@code String} to an

 * {@code int}, as well as other constants and methods useful when

 * dealing with an {@code int}.

 *

 * <p>Implementation note: The implementations of the "bit twiddling"

 * methods (such as {@link #highestOneBit(int) highestOneBit} and

 * {@link #numberOfTrailingZeros(int) numberOfTrailingZeros}) are

 * based on material from Henry S. Warren, Jr.'s <i>Hacker's

 * Delight</i>, (Addison Wesley, 2002).

 *

 * @author  Lee Boynton

 * @author  Arthur van Hoff

 * @author  Josh Bloch

 * @author  Joseph D. Darcy

 * @since JDK1.0

 */

public final class Integer extends Number implements Comparable<Integer> {

    /**

     * A constant holding the minimum value an {@code int} can

     * have, -2<sup>31</sup>.

     */

    public static final int   MIN_VALUE = 0x80000000;

 

    /**

     * A constant holding the maximum value an {@code int} can

     * have, 2<sup>31</sup>-1.

     */

    public static final int   MAX_VALUE = 0x7fffffff;

 

    /**

     * The {@code Class} instance representing the primitive type

     * {@code int}.

     *

     * @since   JDK1.1

     */

    public static final Class<Integer>  TYPE = (Class<Integer>) Class.getPrimitiveClass("int");

 

    /**

     * All possible chars for representing a number as a String

     */

    final static char[] digits = {

        '0' , '1' , '2' , '3' , '4' , '5' ,

        '6' , '7' , '8' , '9' , 'a' , 'b' ,

        'c' , 'd' , 'e' , 'f' , 'g' , 'h' ,

        'i' , 'j' , 'k' , 'l' , 'm' , 'n' ,

        'o' , 'p' , 'q' , 'r' , 's' , 't' ,

        'u' , 'v' , 'w' , 'x' , 'y' , 'z'

    };

 

    /**

     * Returns a string representation of the first argument in the

     * radix specified by the second argument.

     *

     * <p>If the radix is smaller than {@code Character.MIN_RADIX}

     * or larger than {@code Character.MAX_RADIX}, then the radix

     * {@code 10} is used instead.

     *

     * <p>If the first argument is negative, the first element of the

     * result is the ASCII minus character {@code '-'}

     * (<code>'&#92;u002D'</code>). If the first argument is not

     * negative, no sign character appears in the result.

     *

     * <p>The remaining characters of the result represent the magnitude

     * of the first argument. If the magnitude is zero, it is

     * represented by a single zero character {@code '0'}

     * (<code>'&#92;u0030'</code>); otherwise, the first character of

     * the representation of the magnitude will not be the zero

     * character.  The following ASCII characters are used as digits:

     *

     * <blockquote>

     *   {@code 0123456789abcdefghijklmnopqrstuvwxyz}

     * </blockquote>

     *

     * These are <code>'&#92;u0030'</code> through

     * <code>'&#92;u0039'</code> and <code>'&#92;u0061'</code> through

     * <code>'&#92;u007A'</code>. If {@code radix} is

     * <var>N</var>, then the first <var>N</var> of these characters

     * are used as radix-<var>N</var> digits in the order shown. Thus,

     * the digits for hexadecimal (radix 16) are

     * {@code 0123456789abcdef}. If uppercase letters are

     * desired, the {@link java.lang.String#toUpperCase()} method may

     * be called on the result:

     *

     * <blockquote>

     *  {@code Integer.toString(n, 16).toUpperCase()}

     * </blockquote>

     *

     * @param   i       an integer to be converted to a string.

     * @param   radix   the radix to use in the string representation.

     * @return  a string representation of the argument in the specified radix.

     * @see     java.lang.Character#MAX_RADIX

     * @see     java.lang.Character#MIN_RADIX

     */

    public static String toString(int i, int radix) {

 

        if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX)

            radix = 10;

 

        /* Use the faster version */

        if (radix == 10) {

            return toString(i);

        }

 

        char buf[] = new char[33];

        boolean negative = (i < 0);

        int charPos = 32;

 

        if (!negative) {

            i = -i;

        }

 

        while (i <= -radix) {

            buf[charPos--] = digits[-(i % radix)];

            i = i / radix;

        }

        buf[charPos] = digits[-i];

 

        if (negative) {

            buf[--charPos] = '-';

        }

 

        return new String(buf, charPos, (33 - charPos));

    }

 

    /**

     * Returns a string representation of the integer argument as an

     * unsigned integer in base&nbsp;16.

     *

     * <p>The unsigned integer value is the argument plus 2<sup>32</sup>

     * if the argument is negative; otherwise, it is equal to the

     * argument.  This value is converted to a string of ASCII digits

     * in hexadecimal (base&nbsp;16) with no extra leading

     * {@code 0}s. If the unsigned magnitude is zero, it is

     * represented by a single zero character {@code '0'}

     * (<code>'&#92;u0030'</code>); otherwise, the first character of

     * the representation of the unsigned magnitude will not be the

     * zero character. The following characters are used as

     * hexadecimal digits:

     *

     * <blockquote>

     *  {@code 0123456789abcdef}

     * </blockquote>

     *

     * These are the characters <code>'&#92;u0030'</code> through

     * <code>'&#92;u0039'</code> and <code>'&#92;u0061'</code> through

     * <code>'&#92;u0066'</code>. If uppercase letters are

     * desired, the {@link java.lang.String#toUpperCase()} method may

     * be called on the result:

     *

     * <blockquote>

     *  {@code Integer.toHexString(n).toUpperCase()}

     * </blockquote>

     *

     * @param   i   an integer to be converted to a string.

     * @return  the string representation of the unsigned integer value

     *          represented by the argument in hexadecimal (base&nbsp;16).

     * @since   JDK1.0.2

     */

    public static String toHexString(int i) {

        return toUnsignedString(i, 4);

    }

 

    /**

     * Returns a string representation of the integer argument as an

     * unsigned integer in base&nbsp;8.

     *

     * <p>The unsigned integer value is the argument plus 2<sup>32</sup>

     * if the argument is negative; otherwise, it is equal to the

     * argument.  This value is converted to a string of ASCII digits

     * in octal (base&nbsp;8) with no extra leading {@code 0}s.

     *

     * <p>If the unsigned magnitude is zero, it is represented by a

     * single zero character {@code '0'}

     * (<code>'&#92;u0030'</code>); otherwise, the first character of

     * the representation of the unsigned magnitude will not be the

     * zero character. The following characters are used as octal

     * digits:

     *

     * <blockquote>

     * {@code 01234567}

     * </blockquote>

     *

     * These are the characters <code>'&#92;u0030'</code> through

     * <code>'&#92;u0037'</code>.

     *

     * @param   i   an integer to be converted to a string.

     * @return  the string representation of the unsigned integer value

     *          represented by the argument in octal (base&nbsp;8).

     * @since   JDK1.0.2

     */

    public static String toOctalString(int i) {

        return toUnsignedString(i, 3);

    }

 

    /**

     * Returns a string representation of the integer argument as an

     * unsigned integer in base&nbsp;2.

     *

     * <p>The unsigned integer value is the argument plus 2<sup>32</sup>

     * if the argument is negative; otherwise it is equal to the

     * argument.  This value is converted to a string of ASCII digits

     * in binary (base&nbsp;2) with no extra leading {@code 0}s.

     * If the unsigned magnitude is zero, it is represented by a

     * single zero character {@code '0'}

     * (<code>'&#92;u0030'</code>); otherwise, the first character of

     * the representation of the unsigned magnitude will not be the

     * zero character. The characters {@code '0'}

     * (<code>'&#92;u0030'</code>) and {@code '1'}

     * (<code>'&#92;u0031'</code>) are used as binary digits.

     *

     * @param   i   an integer to be converted to a string.

     * @return  the string representation of the unsigned integer value

     *          represented by the argument in binary (base&nbsp;2).

     * @since   JDK1.0.2

     */

    public static String toBinaryString(int i) {

        return toUnsignedString(i, 1);

    }

 

    /**

     * Convert the integer to an unsigned number.

     */

    private static String toUnsignedString(int i, int shift) {

        char[] buf = new char[32];

        int charPos = 32;

        int radix = 1 << shift;

        int mask = radix - 1;

        do {

            buf[--charPos] = digits[i & mask];

            i >>>= shift;

        } while (i != 0);

 

        return new String(buf, charPos, (32 - charPos));

    }

 

 

    final static char [] DigitTens = {

        '0', '0', '0', '0', '0', '0', '0', '0', '0', '0',

        '1', '1', '1', '1', '1', '1', '1', '1', '1', '1',

        '2', '2', '2', '2', '2', '2', '2', '2', '2', '2',

        '3', '3', '3', '3', '3', '3', '3', '3', '3', '3',

        '4', '4', '4', '4', '4', '4', '4', '4', '4', '4',

        '5', '5', '5', '5', '5', '5', '5', '5', '5', '5',

        '6', '6', '6', '6', '6', '6', '6', '6', '6', '6',

        '7', '7', '7', '7', '7', '7', '7', '7', '7', '7',

        '8', '8', '8', '8', '8', '8', '8', '8', '8', '8',

        '9', '9', '9', '9', '9', '9', '9', '9', '9', '9',

        } ;

 

    final static char [] DigitOnes = {

        '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',

        '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',

        '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',

        '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',

        '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',

        '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',

        '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',

        '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',

        '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',

        '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',

        } ;

 

        // I use the "invariant division by multiplication" trick to

        // accelerate Integer.toString.  In particular we want to

        // avoid division by 10.

        //

        // The "trick" has roughly the same performance characteristics

        // as the "classic" Integer.toString code on a non-JIT VM.

        // The trick avoids .rem and .div calls but has a longer code

        // path and is thus dominated by dispatch overhead.  In the

        // JIT case the dispatch overhead doesn't exist and the

        // "trick" is considerably faster than the classic code.

        //

        // TODO-FIXME: convert (x * 52429) into the equiv shift-add

        // sequence.

        //

        // RE:  Division by Invariant Integers using Multiplication

        //      T Gralund, P Montgomery

        //      ACM PLDI 1994

        //

 

    /**

     * Returns a {@code String} object representing the

     * specified integer. The argument is converted to signed decimal

     * representation and returned as a string, exactly as if the

     * argument and radix 10 were given as arguments to the {@link

     * #toString(int, int)} method.

     *

     * @param   i   an integer to be converted.

     * @return  a string representation of the argument in base&nbsp;10.

     */

    public static String toString(int i) {

        if (i == Integer.MIN_VALUE)

            return "-2147483648";

        int size = (i < 0) ? stringSize(-i) + 1 : stringSize(i);

        char[] buf = new char[size];

        getChars(i, size, buf);

        return new String(buf, true);

    }

 

    /**

     * Places characters representing the integer i into the

     * character array buf. The characters are placed into

     * the buffer backwards starting with the least significant

     * digit at the specified index (exclusive), and working

     * backwards from there.

     *

     * Will fail if i == Integer.MIN_VALUE

     */

    static void getChars(int i, int index, char[] buf) {

        int q, r;

        int charPos = index;

        char sign = 0;

 

        if (i < 0) {

            sign = '-';

            i = -i;

        }

 

        // Generate two digits per iteration

        while (i >= 65536) {

            q = i / 100;

        // really: r = i - (q * 100);

            r = i - ((q << 6) + (q << 5) + (q << 2));

            i = q;

            buf [--charPos] = DigitOnes[r];

            buf [--charPos] = DigitTens[r];

        }

 

        // Fall thru to fast mode for smaller numbers

        // assert(i <= 65536, i);

        for (;;) {

            q = (i * 52429) >>> (16+3);

            r = i - ((q << 3) + (q << 1));  // r = i-(q*10) ...

            buf [--charPos] = digits [r];

            i = q;

            if (i == 0) break;

        }

        if (sign != 0) {

            buf [--charPos] = sign;

        }

    }

 

    final static int [] sizeTable = { 9, 99, 999, 9999, 99999, 999999, 9999999,

                                      99999999, 999999999, Integer.MAX_VALUE };

 

    // Requires positive x

    static int stringSize(int x) {

        for (int i=0; ; i++)

            if (x <= sizeTable[i])

                return i+1;

    }

 

    /**

     * Parses the string argument as a signed integer in the radix

     * specified by the second argument. The characters in the string

     * must all be digits of the specified radix (as determined by

     * whether {@link java.lang.Character#digit(char, int)} returns a

     * nonnegative value), except that the first character may be an

     * ASCII minus sign {@code '-'} (<code>'&#92;u002D'</code>) to

     * indicate a negative value or an ASCII plus sign {@code '+'}

     * (<code>'&#92;u002B'</code>) to indicate a positive value. The

     * resulting integer value is returned.

     *

     * <p>An exception of type {@code NumberFormatException} is

     * thrown if any of the following situations occurs:

     * <ul>

     * <li>The first argument is {@code null} or is a string of

     * length zero.

     *

     * <li>The radix is either smaller than

     * {@link java.lang.Character#MIN_RADIX} or

     * larger than {@link java.lang.Character#MAX_RADIX}.

     *

     * <li>Any character of the string is not a digit of the specified

     * radix, except that the first character may be a minus sign

     * {@code '-'} (<code>'&#92;u002D'</code>) or plus sign

     * {@code '+'} (<code>'&#92;u002B'</code>) provided that the

     * string is longer than length 1.

     *

     * <li>The value represented by the string is not a value of type

     * {@code int}.

     * </ul>

     *

     * <p>Examples:

     * <blockquote><pre>

     * parseInt("0", 10) returns 0

     * parseInt("473", 10) returns 473

     * parseInt("+42", 10) returns 42

     * parseInt("-0", 10) returns 0

     * parseInt("-FF", 16) returns -255

     * parseInt("1100110", 2) returns 102

     * parseInt("2147483647", 10) returns 2147483647

     * parseInt("-2147483648", 10) returns -2147483648

     * parseInt("2147483648", 10) throws a NumberFormatException

     * parseInt("99", 8) throws a NumberFormatException

     * parseInt("Kona", 10) throws a NumberFormatException

     * parseInt("Kona", 27) returns 411787

     * </pre></blockquote>

     *

     * @param      s   the {@code String} containing the integer

     *                  representation to be parsed

     * @param      radix   the radix to be used while parsing {@code s}.

     * @return     the integer represented by the string argument in the

     *             specified radix.

     * @exception  NumberFormatException if the {@code String}

     *             does not contain a parsable {@code int}.

     */

    public static int parseInt(String s, int radix)

                throws NumberFormatException

    {

        /*

         * WARNING: This method may be invoked early during VM initialization

         * before IntegerCache is initialized. Care must be taken to not use

         * the valueOf method.

         */

 

        if (s == null) {

            throw new NumberFormatException("null");

        }

 

        if (radix < Character.MIN_RADIX) {

            throw new NumberFormatException("radix " + radix +

                                            " less than Character.MIN_RADIX");

        }

 

        if (radix > Character.MAX_RADIX) {

            throw new NumberFormatException("radix " + radix +

                                            " greater than Character.MAX_RADIX");

        }

 

        int result = 0;

        boolean negative = false;

        int i = 0, len = s.length();

        int limit = -Integer.MAX_VALUE;

        int multmin;

        int digit;

 

        if (len > 0) {

            char firstChar = s.charAt(0);

            if (firstChar < '0') { // Possible leading "+" or "-"

                if (firstChar == '-') {

                    negative = true;

                    limit = Integer.MIN_VALUE;

                } else if (firstChar != '+')

                    throw NumberFormatException.forInputString(s);

 

                if (len == 1) // Cannot have lone "+" or "-"

                    throw NumberFormatException.forInputString(s);

                i++;

            }

            multmin = limit / radix;

            while (i < len) {

                // Accumulating negatively avoids surprises near MAX_VALUE

                digit = Character.digit(s.charAt(i++),radix);

                if (digit < 0) {

                    throw NumberFormatException.forInputString(s);

                }

                if (result < multmin) {

                    throw NumberFormatException.forInputString(s);

                }

                result *= radix;

                if (result < limit + digit) {

                    throw NumberFormatException.forInputString(s);

                }

                result -= digit;

            }

        } else {

            throw NumberFormatException.forInputString(s);

        }

        return negative ? result : -result;

    }

 

    /**

     * Parses the string argument as a signed decimal integer. The

     * characters in the string must all be decimal digits, except

     * that the first character may be an ASCII minus sign {@code '-'}

     * (<code>'&#92;u002D'</code>) to indicate a negative value or an

     * ASCII plus sign {@code '+'} (<code>'&#92;u002B'</code>) to

     * indicate a positive value. The resulting integer value is

     * returned, exactly as if the argument and the radix 10 were

     * given as arguments to the {@link #parseInt(java.lang.String,

     * int)} method.

     *

     * @param s    a {@code String} containing the {@code int}

     *             representation to be parsed

     * @return     the integer value represented by the argument in decimal.

     * @exception  NumberFormatException  if the string does not contain a

     *               parsable integer.

     */

    public static int parseInt(String s) throws NumberFormatException {

        return parseInt(s,10);

    }

 

    /**

     * Returns an {@code Integer} object holding the value

     * extracted from the specified {@code String} when parsed

     * with the radix given by the second argument. The first argument

     * is interpreted as representing a signed integer in the radix

     * specified by the second argument, exactly as if the arguments

     * were given to the {@link #parseInt(java.lang.String, int)}

     * method. The result is an {@code Integer} object that

     * represents the integer value specified by the string.

     *

     * <p>In other words, this method returns an {@code Integer}

     * object equal to the value of:

     *

     * <blockquote>

     *  {@code new Integer(Integer.parseInt(s, radix))}

     * </blockquote>

     *

     * @param      s   the string to be parsed.

     * @param      radix the radix to be used in interpreting {@code s}

     * @return     an {@code Integer} object holding the value

     *             represented by the string argument in the specified

     *             radix.

     * @exception NumberFormatException if the {@code String}

     *            does not contain a parsable {@code int}.

     */

    public static Integer valueOf(String s, int radix) throws NumberFormatException {

        return Integer.valueOf(parseInt(s,radix));

    }

 

    /**

     * Returns an {@code Integer} object holding the

     * value of the specified {@code String}. The argument is

     * interpreted as representing a signed decimal integer, exactly

     * as if the argument were given to the {@link

     * #parseInt(java.lang.String)} method. The result is an

     * {@code Integer} object that represents the integer value

     * specified by the string.

     *

     * <p>In other words, this method returns an {@code Integer}

     * object equal to the value of:

     *

     * <blockquote>

     *  {@code new Integer(Integer.parseInt(s))}

     * </blockquote>

     *

     * @param      s   the string to be parsed.

     * @return     an {@code Integer} object holding the value

     *             represented by the string argument.

     * @exception  NumberFormatException  if the string cannot be parsed

     *             as an integer.

     */

    public static Integer valueOf(String s) throws NumberFormatException {

        return Integer.valueOf(parseInt(s, 10));

    }

 

    /**

     * Cache to support the object identity semantics of autoboxing for values between

     * -128 and 127 (inclusive) as required by JLS.

     *

     * The cache is initialized on first usage.  The size of the cache

     * may be controlled by the -XX:AutoBoxCacheMax=<size> option.

     * During VM initialization, java.lang.Integer.IntegerCache.high property

     * may be set and saved in the private system properties in the

     * sun.misc.VM class.

     */

 

    private static class IntegerCache {

        static final int low = -128;

        static final int high;

        static final Integer cache[];

 

        static {

            // high value may be configured by property

            int h = 127;

            String integerCacheHighPropValue =

                sun.misc.VM.getSavedProperty("java.lang.Integer.IntegerCache.high");

            if (integerCacheHighPropValue != null) {

                int i = parseInt(integerCacheHighPropValue);

                i = Math.max(i, 127);

                // Maximum array size is Integer.MAX_VALUE

                h = Math.min(i, Integer.MAX_VALUE - (-low) -1);

            }

            high = h;

 

            cache = new Integer[(high - low) + 1];

            int j = low;

            for(int k = 0; k < cache.length; k++)

                cache[k] = new Integer(j++);

        }

 

        private IntegerCache() {}

    }

 

    /**

     * Returns an {@code Integer} instance representing the specified

     * {@code int} value.  If a new {@code Integer} instance is not

     * required, this method should generally be used in preference to

     * the constructor {@link #Integer(int)}, as this method is likely

     * to yield significantly better space and time performance by

     * caching frequently requested values.

     *

     * This method will always cache values in the range -128 to 127,

     * inclusive, and may cache other values outside of this range.

     *

     * @param  i an {@code int} value.

     * @return an {@code Integer} instance representing {@code i}.

     * @since  1.5

     */

    public static Integer valueOf(int i) {

        assert IntegerCache.high >= 127;

        if (i >= IntegerCache.low && i <= IntegerCache.high)

            return IntegerCache.cache[i + (-IntegerCache.low)];

        return new Integer(i);

    }

 

    /**

     * The value of the {@code Integer}.

     *

     * @serial

     */

    private final int value;

 

    /**

     * Constructs a newly allocated {@code Integer} object that

     * represents the specified {@code int} value.

     *

     * @param   value   the value to be represented by the

     *                  {@code Integer} object.

     */

    public Integer(int value) {

        this.value = value;

    }

 

    /**

     * Constructs a newly allocated {@code Integer} object that

     * represents the {@code int} value indicated by the

     * {@code String} parameter. The string is converted to an

     * {@code int} value in exactly the manner used by the

     * {@code parseInt} method for radix 10.

     *

     * @param      s   the {@code String} to be converted to an

     *                 {@code Integer}.

     * @exception  NumberFormatException  if the {@code String} does not

     *               contain a parsable integer.

     * @see        java.lang.Integer#parseInt(java.lang.String, int)

     */

    public Integer(String s) throws NumberFormatException {

        this.value = parseInt(s, 10);

    }

 

    /**

     * Returns the value of this {@code Integer} as a

     * {@code byte}.

     */

    public byte byteValue() {

        return (byte)value;

    }

 

    /**

     * Returns the value of this {@code Integer} as a

     * {@code short}.

     */

    public short shortValue() {

        return (short)value;

    }

 

    /**

     * Returns the value of this {@code Integer} as an

     * {@code int}.

     */

    public int intValue() {

        return value;

    }

 

    /**

     * Returns the value of this {@code Integer} as a

     * {@code long}.

     */

    public long longValue() {

        return (long)value;

    }

 

    /**

     * Returns the value of this {@code Integer} as a

     * {@code float}.

     */

    public float floatValue() {

        return (float)value;

    }

 

    /**

     * Returns the value of this {@code Integer} as a

     * {@code double}.

     */

    public double doubleValue() {

        return (double)value;

    }

 

    /**

     * Returns a {@code String} object representing this

     * {@code Integer}'s value. The value is converted to signed

     * decimal representation and returned as a string, exactly as if

     * the integer value were given as an argument to the {@link

     * java.lang.Integer#toString(int)} method.

     *

     * @return  a string representation of the value of this object in

     *          base&nbsp;10.

     */

    public String toString() {

        return toString(value);

    }

 

    /**

     * Returns a hash code for this {@code Integer}.

     *

     * @return  a hash code value for this object, equal to the

     *          primitive {@code int} value represented by this

     *          {@code Integer} object.

     */

    public int hashCode() {

        return value;

    }

 

    /**

     * Compares this object to the specified object.  The result is

     * {@code true} if and only if the argument is not

     * {@code null} and is an {@code Integer} object that

     * contains the same {@code int} value as this object.

     *

     * @param   obj   the object to compare with.

     * @return  {@code true} if the objects are the same;

     *          {@code false} otherwise.

     */

    public boolean equals(Object obj) {

        if (obj instanceof Integer) {

            return value == ((Integer)obj).intValue();

        }

        return false;

    }

 

    /**

     * Determines the integer value of the system property with the

     * specified name.

     *

     * <p>The first argument is treated as the name of a system property.

     * System properties are accessible through the

     * {@link java.lang.System#getProperty(java.lang.String)} method. The

     * string value of this property is then interpreted as an integer

     * value and an {@code Integer} object representing this value is

     * returned. Details of possible numeric formats can be found with

     * the definition of {@code getProperty}.

     *

     * <p>If there is no property with the specified name, if the specified name

     * is empty or {@code null}, or if the property does not have

     * the correct numeric format, then {@code null} is returned.

     *

     * <p>In other words, this method returns an {@code Integer}

     * object equal to the value of:

     *

     * <blockquote>

     *  {@code getInteger(nm, null)}

     * </blockquote>

     *

     * @param   nm   property name.

     * @return  the {@code Integer} value of the property.

     * @see     java.lang.System#getProperty(java.lang.String)

     * @see     java.lang.System#getProperty(java.lang.String, java.lang.String)

     */

    public static Integer getInteger(String nm) {

        return getInteger(nm, null);

    }

 

    /**

     * Determines the integer value of the system property with the

     * specified name.

     *

     * <p>The first argument is treated as the name of a system property.

     * System properties are accessible through the {@link

     * java.lang.System#getProperty(java.lang.String)} method. The

     * string value of this property is then interpreted as an integer

     * value and an {@code Integer} object representing this value is

     * returned. Details of possible numeric formats can be found with

     * the definition of {@code getProperty}.

     *

     * <p>The second argument is the default value. An {@code Integer} object

     * that represents the value of the second argument is returned if there

     * is no property of the specified name, if the property does not have

     * the correct numeric format, or if the specified name is empty or

     * {@code null}.

     *

     * <p>In other words, this method returns an {@code Integer} object

     * equal to the value of:

     *

     * <blockquote>

     *  {@code getInteger(nm, new Integer(val))}

     * </blockquote>

     *

     * but in practice it may be implemented in a manner such as:

     *

     * <blockquote><pre>

     * Integer result = getInteger(nm, null);

     * return (result == null) ? new Integer(val) : result;

     * </pre></blockquote>

     *

     * to avoid the unnecessary allocation of an {@code Integer}

     * object when the default value is not needed.

     *

     * @param   nm   property name.

     * @param   val   default value.

     * @return  the {@code Integer} value of the property.

     * @see     java.lang.System#getProperty(java.lang.String)

     * @see     java.lang.System#getProperty(java.lang.String, java.lang.String)

     */

    public static Integer getInteger(String nm, int val) {

        Integer result = getInteger(nm, null);

        return (result == null) ? Integer.valueOf(val) : result;

    }

 

    /**

     * Returns the integer value of the system property with the

     * specified name.  The first argument is treated as the name of a

     * system property.  System properties are accessible through the

     * {@link java.lang.System#getProperty(java.lang.String)} method.

     * The string value of this property is then interpreted as an

     * integer value, as per the {@code Integer.decode} method,

     * and an {@code Integer} object representing this value is

     * returned.

     *

     * <ul><li>If the property value begins with the two ASCII characters

     *         {@code 0x} or the ASCII character {@code #}, not

     *      followed by a minus sign, then the rest of it is parsed as a

     *      hexadecimal integer exactly as by the method

     *      {@link #valueOf(java.lang.String, int)} with radix 16.

     * <li>If the property value begins with the ASCII character

     *     {@code 0} followed by another character, it is parsed as an

     *     octal integer exactly as by the method

     *     {@link #valueOf(java.lang.String, int)} with radix 8.

     * <li>Otherwise, the property value is parsed as a decimal integer

     * exactly as by the method {@link #valueOf(java.lang.String, int)}

     * with radix 10.

     * </ul>

     *

     * <p>The second argument is the default value. The default value is

     * returned if there is no property of the specified name, if the

     * property does not have the correct numeric format, or if the

     * specified name is empty or {@code null}.

     *

     * @param   nm   property name.

     * @param   val   default value.

     * @return  the {@code Integer} value of the property.

     * @see     java.lang.System#getProperty(java.lang.String)

     * @see java.lang.System#getProperty(java.lang.String, java.lang.String)

     * @see java.lang.Integer#decode

     */

    public static Integer getInteger(String nm, Integer val) {

        String v = null;

        try {

            v = System.getProperty(nm);

        } catch (IllegalArgumentException e) {

        } catch (NullPointerException e) {

        }

        if (v != null) {

            try {

                return Integer.decode(v);

            } catch (NumberFormatException e) {

            }

        }

        return val;

    }

 

    /**

     * Decodes a {@code String} into an {@code Integer}.

     * Accepts decimal, hexadecimal, and octal numbers given

     * by the following grammar:

     *

     * <blockquote>

     * <dl>

     * <dt><i>DecodableString:</i>

     * <dd><i>Sign<sub>opt</sub> DecimalNumeral</i>

     * <dd><i>Sign<sub>opt</sub></i> {@code 0x} <i>HexDigits</i>

     * <dd><i>Sign<sub>opt</sub></i> {@code 0X} <i>HexDigits</i>

     * <dd><i>Sign<sub>opt</sub></i> {@code #} <i>HexDigits</i>

     * <dd><i>Sign<sub>opt</sub></i> {@code 0} <i>OctalDigits</i>

     * <p>

     * <dt><i>Sign:</i>

     * <dd>{@code -}

     * <dd>{@code +}

     * </dl>

     * </blockquote>

     *

     * <i>DecimalNumeral</i>, <i>HexDigits</i>, and <i>OctalDigits</i>

     * are as defined in section 3.10.1 of

     * <cite>The Java&trade; Language Specification</cite>,

     * except that underscores are not accepted between digits.

     *

     * <p>The sequence of characters following an optional

     * sign and/or radix specifier ("{@code 0x}", "{@code 0X}",

     * "{@code #}", or leading zero) is parsed as by the {@code

     * Integer.parseInt} method with the indicated radix (10, 16, or

     * 8).  This sequence of characters must represent a positive

     * value or a {@link NumberFormatException} will be thrown.  The

     * result is negated if first character of the specified {@code

     * String} is the minus sign.  No whitespace characters are

     * permitted in the {@code String}.

     *

     * @param     nm the {@code String} to decode.

     * @return    an {@code Integer} object holding the {@code int}

     *             value represented by {@code nm}

     * @exception NumberFormatException  if the {@code String} does not

     *            contain a parsable integer.

     * @see java.lang.Integer#parseInt(java.lang.String, int)

     */

    public static Integer decode(String nm) throws NumberFormatException {

        int radix = 10;

        int index = 0;

        boolean negative = false;

        Integer result;

 

        if (nm.length() == 0)

            throw new NumberFormatException("Zero length string");

        char firstChar = nm.charAt(0);

        // Handle sign, if present

        if (firstChar == '-') {

            negative = true;

            index++;

        } else if (firstChar == '+')

            index++;

 

        // Handle radix specifier, if present

        if (nm.startsWith("0x", index) || nm.startsWith("0X", index)) {

            index += 2;

            radix = 16;

        }

        else if (nm.startsWith("#", index)) {

            index ++;

            radix = 16;

        }

        else if (nm.startsWith("0", index) && nm.length() > 1 + index) {

            index ++;

            radix = 8;

        }

 

        if (nm.startsWith("-", index) || nm.startsWith("+", index))

            throw new NumberFormatException("Sign character in wrong position");

 

        try {

            result = Integer.valueOf(nm.substring(index), radix);

            result = negative ? Integer.valueOf(-result.intValue()) : result;

        } catch (NumberFormatException e) {

            // If number is Integer.MIN_VALUE, we'll end up here. The next line

            // handles this case, and causes any genuine format error to be

            // rethrown.

            String constant = negative ? ("-" + nm.substring(index))

                                       : nm.substring(index);

            result = Integer.valueOf(constant, radix);

        }

        return result;

    }

 

    /**

     * Compares two {@code Integer} objects numerically.

     *

     * @param   anotherInteger   the {@code Integer} to be compared.

     * @return  the value {@code 0} if this {@code Integer} is

     *          equal to the argument {@code Integer}; a value less than

     *          {@code 0} if this {@code Integer} is numerically less

     *          than the argument {@code Integer}; and a value greater

     *          than {@code 0} if this {@code Integer} is numerically

     *           greater than the argument {@code Integer} (signed

     *           comparison).

     * @since   1.2

     */

    public int compareTo(Integer anotherInteger) {

        return compare(this.value, anotherInteger.value);

    }

 

    /**

     * Compares two {@code int} values numerically.

     * The value returned is identical to what would be returned by:

     * <pre>

     *    Integer.valueOf(x).compareTo(Integer.valueOf(y))

     * </pre>

     *

     * @param  x the first {@code int} to compare

     * @param  y the second {@code int} to compare

     * @return the value {@code 0} if {@code x == y};

     *         a value less than {@code 0} if {@code x < y}; and

     *         a value greater than {@code 0} if {@code x > y}

     * @since 1.7

     */

    public static int compare(int x, int y) {

        return (x < y) ? -1 : ((x == y) ? 0 : 1);

    }

 

 

    // Bit twiddling

 

    /**

     * The number of bits used to represent an {@code int} value in two's

     * complement binary form.

     *

     * @since 1.5

     */

    public static final int SIZE = 32;

 

    /**

     * Returns an {@code int} value with at most a single one-bit, in the

     * position of the highest-order ("leftmost") one-bit in the specified

     * {@code int} value.  Returns zero if the specified value has no

     * one-bits in its two's complement binary representation, that is, if it

     * is equal to zero.

     *

     * @return an {@code int} value with a single one-bit, in the position

     *     of the highest-order one-bit in the specified value, or zero if

     *     the specified value is itself equal to zero.

     * @since 1.5

     */

    public static int highestOneBit(int i) {

        // HD, Figure 3-1

        i |= (i >>  1); //向右移动一位,然后与自己或运算,相当于使最高位的1的右边一位也置成1

        i |= (i >>  2); //把最高位1的右边三位,置成1

        i |= (i >>  4); //把最高位1的右边七位,置成1

        i |= (i >>  8); //把最高位1的右边十五位,置成1

        i |= (i >> 16); //把最高位1的右边三十一位,置成1,因为整数32位,已经足够了

        return i - (i >>> 1);   //无符号右移动一位,然后把最高位腾为0,想剪得到最高位

    }

 

    /**

     * Returns an {@code int} value with at most a single one-bit, in the

     * position of the lowest-order ("rightmost") one-bit in the specified

     * {@code int} value.  Returns zero if the specified value has no

     * one-bits in its two's complement binary representation, that is, if it

     * is equal to zero.

     *

     * @return an {@code int} value with a single one-bit, in the position

     *     of the lowest-order one-bit in the specified value, or zero if

     *     the specified value is itself equal to zero.

     * @since 1.5

     */

    public static int lowestOneBit(int i) {

        // HD, Section 2-1

        return i & -i;

    }

 

    /**

     * Returns the number of zero bits preceding the highest-order

     * ("leftmost") one-bit in the two's complement binary representation

     * of the specified {@code int} value.  Returns 32 if the

     * specified value has no one-bits in its two's complement representation,

     * in other words if it is equal to zero.

     *

     * <p>Note that this method is closely related to the logarithm base 2.

     * For all positive {@code int} values x:

     * <ul>

     * <li>floor(log<sub>2</sub>(x)) = {@code 31 - numberOfLeadingZeros(x)}

     * <li>ceil(log<sub>2</sub>(x)) = {@code 32 - numberOfLeadingZeros(x - 1)}

     * </ul>

     *

     * @return the number of zero bits preceding the highest-order

     *     ("leftmost") one-bit in the two's complement binary representation

     *     of the specified {@code int} value, or 32 if the value

     *     is equal to zero.

     * @since 1.5

     */

    public static int numberOfLeadingZeros(int i) {

        // HD, Figure 5-6

        if (i == 0)

            return 32;

        int n = 1;

        if (i >>> 16 == 0) { n += 16; i <<= 16; }

        if (i >>> 24 == 0) { n +=  8; i <<=  8; }

        if (i >>> 28 == 0) { n +=  4; i <<=  4; }

        if (i >>> 30 == 0) { n +=  2; i <<=  2; }

        n -= i >>> 31;

        return n;

    }

 

    /**

     * Returns the number of zero bits following the lowest-order ("rightmost")

     * one-bit in the two's complement binary representation of the specified

     * {@code int} value.  Returns 32 if the specified value has no

     * one-bits in its two's complement representation, in other words if it is

     * equal to zero.

     *

     * @return the number of zero bits following the lowest-order ("rightmost")

     *     one-bit in the two's complement binary representation of the

     *     specified {@code int} value, or 32 if the value is equal

     *     to zero.

     * @since 1.5

     */

    public static int numberOfTrailingZeros(int i) {

        // HD, Figure 5-14

        int y;

        if (i == 0) return 32;

        int n = 31;

        y = i <<16; if (y != 0) { n = n -16; i = y; }

        y = i << 8; if (y != 0) { n = n - 8; i = y; }

        y = i << 4; if (y != 0) { n = n - 4; i = y; }

        y = i << 2; if (y != 0) { n = n - 2; i = y; }

        return n - ((i << 1) >>> 31);

    }

 

    /**

     * Returns the number of one-bits in the two's complement binary

     * representation of the specified {@code int} value.  This function is

     * sometimes referred to as the <i>population count</i>.

     *

     * @return the number of one-bits in the two's complement binary

     *     representation of the specified {@code int} value.

     * @since 1.5

     */

    public static int bitCount(int i) {

        // HD, Figure 5-2

        i = i - ((i >>> 1) & 0x55555555);

        i = (i & 0x33333333) + ((i >>> 2) & 0x33333333);

        i = (i + (i >>> 4)) & 0x0f0f0f0f;

        i = i + (i >>> 8);

        i = i + (i >>> 16);

        return i & 0x3f;

    }

 

    /**

     * Returns the value obtained by rotating the two's complement binary

     * representation of the specified {@code int} value left by the

     * specified number of bits.  (Bits shifted out of the left hand, or

     * high-order, side reenter on the right, or low-order.)

     *

     * <p>Note that left rotation with a negative distance is equivalent to

     * right rotation: {@code rotateLeft(val, -distance) == rotateRight(val,

     * distance)}.  Note also that rotation by any multiple of 32 is a

     * no-op, so all but the last five bits of the rotation distance can be

     * ignored, even if the distance is negative: {@code rotateLeft(val,

     * distance) == rotateLeft(val, distance & 0x1F)}.

     *

     * @return the value obtained by rotating the two's complement binary

     *     representation of the specified {@code int} value left by the

     *     specified number of bits.

     * @since 1.5

     */

    public static int rotateLeft(int i, int distance) {

        return (i << distance) | (i >>> -distance);

    }

 

    /**

     * Returns the value obtained by rotating the two's complement binary

     * representation of the specified {@code int} value right by the

     * specified number of bits.  (Bits shifted out of the right hand, or

     * low-order, side reenter on the left, or high-order.)

     *

     * <p>Note that right rotation with a negative distance is equivalent to

     * left rotation: {@code rotateRight(val, -distance) == rotateLeft(val,

     * distance)}.  Note also that rotation by any multiple of 32 is a

     * no-op, so all but the last five bits of the rotation distance can be

     * ignored, even if the distance is negative: {@code rotateRight(val,

     * distance) == rotateRight(val, distance & 0x1F)}.

     *

     * @return the value obtained by rotating the two's complement binary

     *     representation of the specified {@code int} value right by the

     *     specified number of bits.

     * @since 1.5

     */

    public static int rotateRight(int i, int distance) {

        return (i >>> distance) | (i << -distance);

    }

 

    /**

     * Returns the value obtained by reversing the order of the bits in the

     * two's complement binary representation of the specified {@code int}

     * value.

     *

     * @return the value obtained by reversing order of the bits in the

     *     specified {@code int} value.

     * @since 1.5

     */

    public static int reverse(int i) {

        // HD, Figure 7-1

        i = (i & 0x55555555) << 1 | (i >>> 1) & 0x55555555;

        i = (i & 0x33333333) << 2 | (i >>> 2) & 0x33333333;

        i = (i & 0x0f0f0f0f) << 4 | (i >>> 4) & 0x0f0f0f0f;

        i = (i << 24) | ((i & 0xff00) << 8) |

            ((i >>> 8) & 0xff00) | (i >>> 24);

        return i;

    }

 

    /**

     * Returns the signum function of the specified {@code int} value.  (The

     * return value is -1 if the specified value is negative; 0 if the

     * specified value is zero; and 1 if the specified value is positive.)

     *

     * @return the signum function of the specified {@code int} value.

     * @since 1.5

     */

    public static int signum(int i) {

        // HD, Section 2-7

        return (i >> 31) | (-i >>> 31);

    }

 

    /**

     * Returns the value obtained by reversing the order of the bytes in the

     * two's complement representation of the specified {@code int} value.

     *

     * @return the value obtained by reversing the bytes in the specified

     *     {@code int} value.

     * @since 1.5

     */

    public static int reverseBytes(int i) {

        return ((i >>> 24)           ) |

               ((i >>   8) &   0xFF00) |

               ((i <<   8) & 0xFF0000) |

               ((i << 24));

    }

 

    /** use serialVersionUID from JDK 1.0.2 for interoperability */

    private static final long serialVersionUID = 1360826667806852920L;

}

 

分享到:
评论

相关推荐

    node-v0.10.9-sunos-x86.tar.gz

    Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。

    ARL-master-wade.zip

    ARL-master-wade.zip

    paralleled FLUS_V2.4.zip

    paralleled FLUS_V2.4.zip

    2121212111111111111111111

    212111111111111

    wx077企业内部员工管理系统-thinkphp5+vue+uniapp-小程序.zip(可运行源码+sql文件+)

    wx077企业内部员工管理系统-thinkphp5+vue+uniapp-小程序.zip 企业内部员工管理系统是一个很好的项目,结合了后端(thinkphp5)、前端(Vue.js)和 uniapp 技术,实现了前后端分离。

    【答辩前参考】用于学生答辩前参考(两套)

    【答辩前参考】用于学生答辩前参考(两套)

    node-v0.8.25-sunos-x86.tar.gz

    Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。

    课设毕设基于SSM的宠物医院信息管理系统-源码可运行

    课设毕设基于SSM的宠物医院信息管理系统--源码可运行

    基于C语言的天气客户端的实现.zip

    基于C语言的天气客户端的实现.zip

    123pan_2.0.5.exe

    123pan_2.0.5

    Java项目之jspm校园视频监控系统(源码 + 说明文档)

    Java项目之jspm校园视频监控系统(源码 + 说明文档) 第二章 技术介绍 6 2.1 B/S结构简介 6 2.2 MySQL 数据库技术 6 2.3MySQL环境配置 8 2.4Java语言简介 9 2.5 JSP技术 10 2.6 SSM框架 10 第三章 系统分析与设计 11 3.1系统说明 11 3.2系统设计的目标 11 3.3系统设计规则与运行环境 11 3.4系统可行性分析 12 3.4.1技术可行性 12 3.4.2经济可行性 12 3.4.3操作可行性 12 3.4.4运行可行性 13 3.5 系统现状分析 13 3.6系统的设计思想 14 3.7系统功能结构 15 3.8系统流程分析 16 3.8.1操作流程 16 3.8.2添加信息流程 16 3.8.3删除信息流程 17 第四章 数据库设计 18 4.1数据库概念设计 18 4.2数据表设计 18 第五章 系统的详细设计 23 5.1系统首页的设计 23 5.2后台功能模块 25 5.2.1管理员功能模块 25 5.2.2视频管理员功能模块 28 5.2.3用户功能模块 28 第六章 系统的调试和测试 3

    node-v0.8.7-sunos-x64.tar.gz

    Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。

    node-v0.10.48-darwin-x86.tar.gz

    Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。

    node-v0.12.12-linux-x64.tar.xz

    Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。

    基于用户认证数据构建评估模型预测认证行为风险系统python源码+数据集+多种算法+说明文档.zip

    基于用户认证数据构建评估模型预测认证行为风险系统python源码+数据集+多种算法+说明文档.zip个人经导师指导并认可通过的98分大作业设计项目,适用人群:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业或毕业设计,作为“参考资料”使用。 基于用户认证数据构建评估模型预测认证行为风险系统python源码+数据集+多种算法+说明文档.zip个人经导师指导并认可通过的98分大作业设计项目,适用人群:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业或毕业设计,作为“参考资料”使用。 基于用户认证数据构建评估模型预测认证行为风险系统python源码+数据集+多种算法+说明文档.zip个人经导师指导并认可通过的98分大作业设计项目,适用人群:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业或毕业设计,作为“参考资料”使用。 基于用户认证数据构建评估模型预测认证行为风险系统python源码+数据集+多种算法+说明文档.zip个人经导师指导并认可通过的98分大作业设计项目,适用人群:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业或毕业设计。

    8086汇编语言指令系统

    8086汇编语言指令系统

    2020西电电赛初试题:波形发生器.zip

    2020西电电赛初试题:波形发生器.zip

    intel-visual-fortran-xe2011.zip

    完全有用

    基于python+卷积神经网络实现的任意果蔬识别系统+PyQt5的UI可视化+源码+文档(毕业设计&课程设计&项目开发)

    基于python+卷积神经网络实现的任意果蔬识别系统+源码+文档,适合毕业设计、课程设计、项目开发。项目源码已经过严格测试,可以放心参考并在此基础上延申使用~ 基于python+卷积神经网络实现的任意果蔬识别系统+源码+文档,适合毕业设计、课程设计、项目开发。项目源码已经过严格测试,可以放心参考并在此基础上延申使用~ 项目简介: 利用卷积神经网络实现图像的识别并将代码部署在树莓派中实现,使用的是谷歌深度学习框架Tensorflow,使用果蔬图像数据集训练模型后,可以达到随机输入单张果蔬图片,返回图片分类结果的效果

    国密SM2-SM3加密解密,加签验签操作C#源码 复刻Java

    国密SM2_SM3加密解密,加签验签操作C#源码 复刻Java 完整有效

Global site tag (gtag.js) - Google Analytics