`
weiyuhu
  • 浏览: 231090 次
  • 性别: Icon_minigender_1
  • 来自: 南京
社区版块
存档分类
最新评论

哈夫曼编码

阅读更多
本文描述在网上能够找到的最简单,最快速的哈夫曼编码。本方法不使用任何扩展动态库,比如STL或者组件。只使用简单的C函数,比如:memset,memmove,qsort,malloc,realloc和memcpy。
因此,大家都会发现,理解甚至修改这个编码都是很容易的。
背景
哈夫曼压缩是个无损的压缩算法,一般用来压缩文本和程序文件。哈夫曼压缩属于可变代码长度算法一族。意思是个体符号(例如,文本文件中的字符)用一个特定长度的位序列替代。因此,在文件中出现频率高的符号,使用短的位序列,而那些很少出现的符号,则用较长的位序列。
编码使用
我用简单的C函数写这个编码是为了让它在任何地方使用都会比较方便。你可以将他们放到类中,或者直接使用这个函数。并且我使用了简单的格式,仅仅输入输出缓冲区,而不象其它文章中那样,输入输出文件。
bool CompressHuffman(BYTE *pSrc, int nSrcLen, BYTE *&pDes, int &nDesLen);
bool DecompressHuffman(BYTE *pSrc, int nSrcLen, BYTE *&pDes, int &nDesLen);
要点说明
速度
为了让它(huffman.cpp)快速运行,我花了很长时间。同时,我没有使用任何动态库,比如STL或者MFC。它压缩1M数据少于100ms(P3处理器,主频1G)。
压缩
压缩代码非常简单,首先用ASCII值初始化511个哈夫曼节点:
CHuffmanNode nodes[511];
for(int nCount = 0; nCount < 256; nCount++)
nodes[nCount].byAscii = nCount;
然后,计算在输入缓冲区数据中,每个ASCII码出现的频率:
for(nCount = 0; nCount < nSrcLen; nCount++)
nodes[pSrc[nCount]].nFrequency++;
然后,根据频率进行排序:
qsort(nodes, 256, sizeof(CHuffmanNode), frequencyCompare);
现在,构造哈夫曼树,获取每个ASCII码对应的位序列:
int nNodeCount = GetHuffmanTree(nodes);
构造哈夫曼树非常简单,将所有的节点放到一个队列中,用一个节点替换两个频率最低的节点,新节点的频率就是这两个节点的频率之和。这样,新节点就是两个被替换节点的父节点了。如此循环,直到队列中只剩一个节点(树根)。
// parent node
pNode = &nodes[nParentNode++];
// pop first child
pNode->pLeft = PopNode(pNodes, nBackNode--, false);
// pop second child
pNode->pRight = PopNode(pNodes, nBackNode--, true);
// adjust parent of the two poped nodes
pNode->pLeft->pParent = pNode->pRight->pParent = pNode;
// adjust parent frequency
pNode->nFrequency = pNode->pLeft->nFrequency + pNode->pRight->nFrequency;
这里我用了一个好的诀窍来避免使用任何队列组件。我先前就直到ASCII码只有256个,但我 分配了511个(CHuffmanNode nodes[511]),前255个记录ASCII码,而用后255个记录哈夫曼树中的父节点。并且在构造树的时候只使用一个指针数组 (ChuffmanNode *pNodes[256])来指向这些节点。同样使用两个变量来操作队列索引(int nParentNode = nNodeCount;nBackNode = nNodeCount –1)。
接着,压缩的最后一步是将每个ASCII编码写入输出缓冲区中:
int nDesIndex = 0;
// loop to write codes
for(nCount = 0; nCount < nSrcLen; nCount++)
{
*(DWORD*)(pDesPtr+(nDesIndex>>3)) |=
nodes[pSrc[nCount]].dwCode << (nDesIndex&7);
nDesIndex += nodes[pSrc[nCount]].nCodeLength;
}
(nDesIndex>>3): >>3 以8位为界限右移后到达右边字节的前面
(nDesIndex&7): &7 得到最高位.
注意:在压缩缓冲区中,我们必须保存哈夫曼树的节点以及位序列,这样我们才能在解压缩时重新构造哈夫曼树(只需保存ASCII值和对应的位序列)。
解压缩
解压缩比构造哈夫曼树要简单的多,将输入缓冲区中的每个编码用对应的ASCII码逐个替换就可以了。只要记住,这里的输入缓冲区是一个包含每个ASCII值的编码的位流。因此,为了用ASCII值替换编码,我们必须用位流搜索哈夫曼树,直到发现一个叶节点,然后将它的ASCII值添加到输出缓冲区中:
int nDesIndex = 0;
DWORD nCode;
while(nDesIndex < nDesLen)
{
nCode = (*(DWORD*)(pSrc+(nSrcIndex>>3)))>>(nSrcIndex&7);
pNode = pRoot;
while(pNode->pLeft)
{
pNode = (nCode&1) ? pNode->pRight : pNode->pLeft;
nCode >>= 1;
nSrcIndex++;
}
pDes[nDesIndex++] = pNode->byAscii;
}
过程
#include <stdio.h>
#include<stdlib.h>
#include<string.h>
#include<malloc.h>
#include<math.h>
#define M 10
typedef struct Fano_Node
{
char ch;
float weight;
}FanoNode[M];
typedef struct node
{
int start;
int end;
struct node *next;
}LinkQueueNode;
typedef struct
{
LinkQueueNode *front;
LinkQueueNode *rear;
}LinkQueue;
void EnterQueue(LinkQueue *q,int s,int e)
{
LinkQueueNode *NewNode;
NewNode=(LinkQueueNode *)malloc(sizeof(LinkQueueNode));
if(NewNode!=NULL)
{
NewNode->start=s;
NewNode->end=e;
NewNode->next=NULL;
q->rear->next=NewNode;
q->rear=NewNode;
}
else printf("Error!");
}
//***按权分组***//
void Divide(FanoNode f,int s,int *m,int e)
{
int i;
float sum,sum1;
sum=0;
for(i=s;i<=e;i++)
sum+=f.weight;
*m=s;
sum1=0;
for(i=s;i<e;i++)
{
sum1+=f.weight;
*m=fabs(sum-2*sum1)>fabs(sum-2*sum1-2*f.weight)?(i+1):*m;
if(*m==i)
break;
}
}
main()
{
int i,j,n,max,m,h[M];
int sta,mid,end;
float w;
char c,fc[M][M];
FanoNode FN;
LinkQueueNode *p;
LinkQueue *Q;
//***初始化队Q***//
Q->front=(LinkQueueNode *)malloc(sizeof(LinkQueueNode));
Q->rear=Q->front;
Q->front->next=NULL;
printf("\t***FanoCoding***\n");
printf("Please input the number of node:"); /*输入信息*/
scanf("%d",&n);
i=1;
while(i<=n)
{
printf("%d weight and node:",i);
scanf("%f %c",&FN.weight,&FN.ch);
for(j=1;j<i;j++)
{
if(FN.ch==FN[j].ch)
{
printf("Same node!!!\n");
break;
}
}
if(i==j)
i++;
}
for(i=1;i<=n;i++) /*排序*/
{
max=i+1;
for(j=max;j<=n;j++)
max=FN[max].weight<FN[j].weight?j:max;
if(FN.weight<FN[max].weight)
{
w=FN.weight;
FN.weight=FN[max].weight;
FN[max].weight=w;
c=FN.ch;
FN.ch=FN[max].ch;
FN[max].ch=c;
}
}
for(i=1;i<=n;i++) /*初始化h*/
h=0;
EnterQueue(Q,1,n); /*1和n进队*/
while(Q->front->next!=NULL)
{
p=Q->front->next; /*出队*/
Q->front->next=p->next;
if(p==Q->rear)
Q->rear=Q->front;
sta=p->start;
end=p->end;
free(p);
Divide(FN,sta,&m,end); /*按权分组*/
for(i=sta;i<=m;i++)
{
fc[h]='0';
h++;
}
if(sta!=m)
EnterQueue(Q,sta,m);
else
fc[sta][h[sta]]='\0';
for(i=m+1;i<=end;i++)
{
fc[h]='1';
h++;
}
if(m==sta&&(m+1)==end) //如果分组后首元素的下标与中间元素的相等,
{ //并且和最后元素的下标相差为1,则编码码字字符串结束
fc[m][h[m]]='\0';
fc[end][h[end]]='\0';
}
else
EnterQueue(Q,m+1,end);
}
for(i=1;i<=n;i++) /*打印编码信息*/
{
printf("%c:",FN.ch);
printf("%s\n",fc);
}
system("pause");
}
#include<stdio.h>
#include<stdlib.h>
#include<malloc.h>
#include<string.h>
#define N 100
#define M 2*N-1
typedef char * HuffmanCode[2*M];
typedef struct
{
char weight;
int parent;
int LChild;
int RChild;
}HTNode,Huffman[M+1];
typedef struct Node
{
int weight; /*叶子结点的权值*/
char c; /*叶子结点*/
int num; /*叶子结点的二进制码的长度*/
}WNode,WeightNode[N];
/***产生叶子结点的字符和权值***/
void CreateWeight(char ch[],int *s,WeightNode *CW,int *p)
{
int i,j,k;
int tag;
*p=0;
for(i=0;ch!='\0';i++)
{
tag=1;
for(j=0;j<i;j++)
if(ch[j]==ch)
{
tag=0;
break;
}
if(tag)
{
(*CW)[++*p].c=ch;
(*CW)[*p].weight=1;
for(k=i+1;ch[k]!='\0';k++)
if(ch==ch[k])
(*CW)[*p].weight++;
}
}
*s=i;
}
/********创建HuffmanTree********/
void CreateHuffmanTree(Huffman *ht,WeightNode w,int n)
{
int i,j;
int s1,s2;
for(i=1;i<=n;i++)
{
(*ht).weight =w.weight;
(*ht).parent=0;
(*ht).LChild=0;
(*ht).RChild=0;
}
for(i=n+1;i<=2*n-1;i++)
{
(*ht).weight=0;
(*ht).parent=0;
(*ht).LChild=0;
(*ht).parent=0;
}
for(i=n+1;i<=2*n-1;i++)
{
for(j=1;j<=i-1;j++)
if(!(*ht)[j].parent)
break;
s1=j; /*找到第一个双亲不为零的结点*/
for(;j<=i-1;j++)
if(!(*ht)[j].parent)
s1=(*ht)[s1].weight>(*ht)[j].weight?j:s1;
(*ht)[s1].parent=i;
(*ht).LChild=s1;
for(j=1;j<=i-1;j++)
if(!(*ht)[j].parent)
break;
s2=j; /*找到第一个双亲不为零的结点*/
for(;j<=i-1;j++)
if(!(*ht)[j].parent)
s2=(*ht)[s2].weight>(*ht)[j].weight?j:s2;
(*ht)[s2].parent=i;
(*ht).RChild=s2;
(*ht).weight=(*ht)[s1].weight+(*ht)[s2].weight;
}
}
/***********叶子结点的编码***********/
void CrtHuffmanNodeCode(Huffman ht,char ch[],HuffmanCode *h,WeightNode *weight,int m,int n)
{
int i,j,k,c,p,start;
char *cd;
cd=(char *)malloc(n*sizeof(char));
cd[n-1]='\0';
for(i=1;i<=n;i++)
{
start=n-1;
c=i;
p=ht.parent;
while(p)
{
start--;
if(ht[p].LChild==c)
cd[start]='0';
else
cd[start]='1';
c=p;
p=ht[p].parent;
}
(*weight).num=n-start;
(*h)=(char *)malloc((n-start)*sizeof(char));
p=-1;
strcpy((*h),&cd[start]);
}
system("pause");
}
/*********所有字符的编码*********/
void CrtHuffmanCode(char ch[],HuffmanCode h,HuffmanCode *hc,WeightNode weight,int n,int m)
{
int i,j,k;
for(i=0;i<m;i++)
{
for(k=1;k<=n;k++) /*从(*weight)[k].c中查找与ch相等的下标K*/
if(ch==weight[k].c)
break;
(*hc)=(char *)malloc((weight[k].num+1)*sizeof(char));
for(j=0;j<=weight[k].num;j++)
(*hc)[j]=h[k][j];
}
}
/*****解码*****/
void TrsHuffmanTree(Huffman ht,WeightNode w,HuffmanCode hc,int n,int m)
{
int i=0,j,p;
printf("***StringInformation***\n");
while(i<m)
{
p=2*n-1;
for(j=0;hc[j]!='\0';j++)
{
if(hc[j]=='0')
p=ht[p].LChild;
else
p=ht[p].RChild;
}
printf("%c",w[p].c); /*打印原信息*/
i++;
}
}
main()
{
int i,n,m,s1,s2,j; /*n为叶子结点的个数*/
char ch[N],w[N]; /*ch[N]存放输入的字符串*/
Huffman ht; /*二叉数 */
HuffmanCode h,hc; /* h存放叶子结点的编码,hc 存放所有结点的编码*/
WeightNode weight; /*存放叶子结点的信息*/
printf("\t***HuffmanCoding***\n");
printf("please input information :");
gets(ch); /*输入字符串*/
CreateWeight(ch,&m,&weight,&n); /*产生叶子结点信息,m为字符串ch[]的长度*/
printf("***WeightInformation***\n Node "); /*输出叶子结点的字符与权值*/
for(i=1;i<=n;i++)
printf("%c ",weight.c);
printf("\nWeight ");
for(i=1;i<=n;i++)
printf("%d ",weight.weight);
CreateHuffmanTree(&ht,weight,n); /*产生Huffman树*/
printf("\n***HuffamnTreeInformation***\n");
for(i=1;i<=2*n-1;i++) /*打印Huffman树的信息*/
printf("\t%d %d %d %d\n",i,ht.weight,ht.parent,ht.LChild,ht.RChild);
CrtHuffmanNodeCode(ht,ch,&h,&weight,m,n); /*叶子结点的编码*/
printf(" ***NodeCode***\n"); /*打印叶子结点的编码*/
for(i=1;i<=n;i++)
{
printf("\t%c:",weight.c);
printf("%s\n",h);
}
CrtHuffmanCode(ch,h,&hc,weight,n,m); /*所有字符的编码*/
printf("***StringCode***\n"); /*打印字符串的编码*/
for(i=0;i<m;i++)
printf("%s",hc);
system("pause");
TrsHuffmanTree(ht,weight,hc,n,m); /*解码*/
system("pause");
}
Matlab 中简易实现Huffman编译码:
n=input('Please input the total number: ');
hf=zeros(2*n-1,5);
hq=[];
for ki=1:n
hf(ki,1)=ki;
hf(ki,2)=input('Please input the frequency: ');
hq=[hq,hf(ki,2)];
end
for ki=n+1:2*n-1
hf(ki,1)=ki;
mhq1=min(hq);
m=size(hq);
m=m(:,2);
k=1;
while k<=m%del min1
if hq(:,k)==mhq1
hq=[hq(:,1:(k-1)) hq(:,(k+1):m)];
m=m-1;
break
else
k=k+1;
end
end
k=1;
while hf(k,2)~=mhq1|hf(k,5)==1%find min1 location
k=k+1;
end
hf(k,5)=1;
k1=k;
mhq2=min(hq);
k=1;
while k<=m%del min2
if hq(:,k)==mhq2
hq=[hq(:,1:(k-1)) hq(:,(k+1):m)];
m=m-1;
break
else
k=k+1;
end
end
k=1;
while hf(k,2)~=mhq2|hf(k,5)==1%find min2 location
k=k+1;
end
hf(k,5)=1;
k2=k;
hf(ki,2)=mhq1+mhq2;
hf(ki,3)=k1;
hf(ki,4)=k2;
hq=[hq hf(ki,2)];
end
clc
choose=input('Please choose what you want:\n1: Encoding\n2: Decoding\n3:.Exit\n');
while choose==1|choose==2
if choose==1
a=input('Please input the letter you want to Encoding: ');
k=1;
while hf(k,2)~=a
k=k+1;
if k>=n
display('Error! You did not input this number.');
break
end
end
if k>=n
break
end
r=[];
while hf(k,5)==1
kc=n+1;
while hf(kc,3)~=k&hf(kc,4)~=k
kc=kc+1;
end
if hf(kc,3)==k
r=[0 r];
else
r=[1 r];
end
k=kc;
end
r
else
a=input('Please input the metrix you want to Decoding: ');
sa=size(a);
sa=sa(:,2);
k=2*n-1;
while sa~=0
if a(:,1)==0
k=hf(k,3);
else
k=hf(k,4);
end
a=a(:,2:sa);
sa=sa-1;
if k==0
display('Error! The metrix you entered is a wrong one.');
break
end
end
if k==0
break
end
r=hf(k,2);
r
end
choose=input('Please choose what you want:\n1: Encoding\n2: Decoding\n3:.Exit\n');
clc
end
if choose~=1&choose~=2
clc;
end
分享到:
评论

相关推荐

    哈夫曼编码系统(C语言实现)

    利用哈夫曼编码进行通信可以大大提高信道利用率,缩短信息传输时间,降低传输成本。但是,这要求在发送端通过一个编码系统对待传输数据预先编码,在接收端将传来的数据进行译码(复原)。对于双工信道(即可以双向...

    三元哈夫曼编码 哈夫曼树

    详细描述了哈夫曼树的构造方法,同时推广到三元哈夫曼编码,并用C语言于VC++上实现

    哈夫曼编码 将文本哈夫曼编码并求平均码长

    这个代码是用C/C++实现哈夫曼编码并将编码输出。 文本为操作者输入,,对各字符进行频率统计,然后进行哈夫曼编码,并将编码结果输出,同时可求得平均码长。

    哈夫曼树与哈夫曼编码

    哈夫曼树与哈夫曼编码 建立哈夫曼树并计算哈夫曼编码

    哈夫曼编码数据压缩_哈夫曼编码_哈夫曼编码实现数据压缩_

    哈夫曼编码实现文本文件的压缩,可作为数据压缩作业的参考

    哈夫曼编码/译码实现

    压缩文件即读文件,统计文件中的字符个数,对文件进行哈夫曼编码和译码,并将编码译码后的字符存储在文件中。 完成功能的详细说明: 1.统计文本文件中各字符的频率(涉及读文件,统计字符个数); 2.对文件中的...

    数字彩色图像的哈夫曼编码与解码的matlab实现

    哈夫曼编码(Huffman Coding),是一种熵编码方式,哈夫曼编码是可变字长编码(VLC)的一种。Huffman于1952年提出一种编码方法,该方法完全依据字符出现概率来构造异字头的平均长度最短的码字,有时称之为最佳编码,一般...

    基于哈夫曼编码的图像压缩技术研究

    摘 要:哈夫曼编码是一种数据编码方式,以哈夫曼树——即最优二叉树,用带权路径长度最小的二叉树,对数据进行重编码,经常应 用于数据压缩。在计算机信息处理中,“哈夫曼编码”是一种一致性编码法(又称“熵编码法...

    用哈夫曼编码实现文件压缩

    利用哈夫曼编码思想,设计对一个文本文件(.txt)中的字符进行哈夫曼编码,生成编码压缩文件(.txt),并且还可将压缩后的文件进行解码还原为原始文本文件(.txt)。 实现的功能: (1)压缩:实现对文件的压缩,生成...

    哈夫曼编码课程设计

    哈夫曼编码课程设计,我要让所以人都知道写一个哈夫曼编码树便不是难事。

    哈夫曼编码C++实现

    哈夫曼编码是广泛用于数据文件压缩的十分有效的编码方式,其压缩率通常在20%—90%之间。哈夫曼编码算法是通过使用字符在文件中出现的频率表来构造最优前缀码的贪心算法。所谓前缀码,即是任一字符的编码都不是其他...

    用c语言实现哈夫曼编码

    这是那个用c语言来实现的哈夫曼编码程序,可以对输入的数据进行相应的编码……

    c语言实现哈夫曼编码

    c语言实现哈夫曼编码,并求平均码长 c语言实现哈夫曼编码,并求平均码长

    基于C++文件的哈夫曼编码与解码.zip

    本人的小工具仅针对英文大小字母及 ' '\n' ' ' 字符针对性的进行了哈夫曼编码,若想实现中文及各种支持语言的编码,可在此代码基础上,进行优化。 详细介绍参考:...

    数据结构哈夫曼编码实验报告.doc

    一、【问题描述】 利用哈夫曼编码进行通信可以大大提高信道利用率,缩短信息传输时间,降低传输成本 。但是,这要求在发送端通过一个编码系统对待传数据预先编码,在接收端将传来的数 据进行译码,此实验即设计这样...

    c++ 源代码 哈夫曼树 哈夫曼编码

    c++ 源代码 哈夫曼树 哈夫曼编码 部分代码如下: #include"Huffman.h" #include"hfmTree.h" #include using namespace std; int main() { cout~~~~~~~~~~~~~welcome to Huffman encodrding&decoding system ~~~~~~...

    哈夫曼编码器设计实验报告.zip_slidefi3_哈夫曼编码_哈夫曼编码器_对一段数据序列进行哈夫曼编码

    要求对一段数据序列进行哈夫曼编码,使得平均码长最短,输出各元素编码和编码后的数据序列。 ①组成序列的元素是[0-9]这10个数字,每个数字其对应的4位二进制数表示。比如5对应0101,9对应1001。 ②输入数据序列的...

    哈夫曼编码译码器

    数据结构课程设计,实现哈夫曼编码,译码,打印哈夫曼树

Global site tag (gtag.js) - Google Analytics