`

《Java并发编程》之五:取消和关闭线程

    博客分类:
  • Java
阅读更多

Java没有提供任何机制来安全地终止线程,虽然Thread.stop和suspend等方法提供了这样的机制,但是存在严重的缺陷,应该避免使用这些方法。但是Java提供了中断Interruption机制,这是一种协作机制,能够使一个线程终止另一个线程的当前工作。

这种协作方式是必要的,我们很少希望某个任务线程或者服务立即停止,因为这种立即停止会时某个共享的数据结构处于不一致的状态。相反,在编写任务和服务的时候可以使用一种协作方式:当需要停止的时候,它们会先清除当前正在执行的工作,然后再结束。

 

7.1  任务取消

如果外部代码能够在某个操作正常完成之前将其置于 完成 状态,那么这个操作就可以称为可取消的Cancellable

其中一种协作机制是设置一个取消标志Cancellation Requested标志,而任务定期查看该标志。

@ThreadSafe
public class PrimeGenerator implements Runnable {
    private static ExecutorService exec = Executors.newCachedThreadPool();

    @GuardedBy("this")
    private final List<BigInteger> primes = new ArrayList<BigInteger>();
    private volatile boolean cancelled;

    public void run() {
        BigInteger p = BigInteger.ONE;
        while (!cancelled) {
            p = p.nextProbablePrime();
            synchronized (this) {
                primes.add(p);
            }
        }
    }

    public void cancel() {
        cancelled = true;
    }

    public synchronized List<BigInteger> get() {
        return new ArrayList<BigInteger>(primes);
    }

    static List<BigInteger> aSecondOfPrimes() throws InterruptedException {
        PrimeGenerator generator = new PrimeGenerator();
        exec.execute(generator);
        try {
            SECONDS.sleep(1);
        } finally {
            generator.cancel();
        }
        return generator.get();
    }
}

 在Java的API或语言规范中,并没有将中断与任何语义关联起来,但实际上,如果在取消之外的其他操作中使用中断,那么都是不合适的,并且很难支撑起更大的应用。

 

每个线程都有一个boolean类型的中断状态。但中断线程时,这个线程的中断状态将被设置成true。

 

Thread中的三个方法:

public void interrupt()   中断一个线程

public boolean isInterrupted()  获取中断标志,判断是否中断

public static boolean interrupted()  清楚中断状态,并返回它之前的状态值

 

线程在阻塞状态下发生中断的时候会抛出InterruptedException,例如Thread.sleep(), Thread.wait(), Thread.join()等方法。

当线程在非阻塞状态下中断的时候,它的中断状态将被设置,然后根据检查中断状态来判断是否中断。

 

调用interrupt并不意味着立即停止目标线程正在进行的工作,而只是传递了请求中断的消息,换句话说,仅仅修改了线程的isInterrupted标志字段。

 

通常,中断时实现取消的最合理方式。

public class PrimeProducer extends Thread {
    private final BlockingQueue<BigInteger> queue;

    PrimeProducer(BlockingQueue<BigInteger> queue) {
        this.queue = queue;
    }

    public void run() {
        try {
            BigInteger p = BigInteger.ONE;
            while (!Thread.currentThread().isInterrupted())
                queue.put(p = p.nextProbablePrime());
        } catch (InterruptedException consumed) {
            /* Allow thread to exit */
        }
    }

    public void cancel() {
        interrupt();
    }
}

 

7.1.3  响应中断

只有实现了线程中断策略的代码才可以屏蔽中断请求,在常规任务和库代码中都不应该屏蔽中断请求。

两种方法响应中断:

* 传递异常InterruptedException
* 恢复中断状态,从而使调用栈中上层代码能够对其进行处理
不可取消的任务在退出前恢复中断标志
public class NoncancelableTask {
    public Task getNextTask(BlockingQueue<Task> queue) {
        boolean interrupted = false;
        try {
            while (true) {
                try {
                    return queue.take();
                } catch (InterruptedException e) {
                    interrupted = true;
                    // fall through and retry
                }
            }
        } finally {
            if (interrupted)
                Thread.currentThread().interrupt();
        }
    }

    interface Task {
    }
}
 
7.1.5  定时任务,通过Future来实现取消:
除非你清楚线程的中断策略,否则不要中断线程,那么在神马情况下调用cancel可以将参数指定为true呢。
如果任务的线程是由标准的Executor创建的,那么可以设置mayInterruptIfRunning。
public class TimedRun {
    private static final ExecutorService taskExec = Executors.newCachedThreadPool();

    public static void timedRun(Runnable r, long timeout, TimeUnit unit)
            throws InterruptedException {
        Future<?> task = taskExec.submit(r);
        try {
            task.get(timeout, unit);
        } catch (TimeoutException e) {
            // task will be cancelled below
        } catch (ExecutionException e) {
            // exception thrown in task; rethrow
            throw launderThrowable(e.getCause());
        } finally {
            // Harmless if task already completed
            task.cancel(true); // interrupt if running
        }
    }
}
 
7.1.6  处理不可中断的阻塞
对于这些线程,中断请求只能设置线程的中断状态,除此之外没有其他任何作用。
我们可以使用类似中断的手段来停止这些线程,但这要求知道线程阻塞的原因。
通过newTaskFor将非标准的取消操作封装在一个任务中:
 
public abstract class SocketUsingTask<T> implements CancellableTask<T> {
    @GuardedBy("this")
    private Socket socket;

    protected synchronized void setSocket(Socket s) {
        socket = s;
    }

    public synchronized void cancel() {
        try {
            if (socket != null)
                socket.close();
        } catch (IOException ignored) {
        }
    }

    public RunnableFuture<T> newTask() {
        return new FutureTask<T>(this) {
            public boolean cancel(boolean mayInterruptIfRunning) {
                try {
                    SocketUsingTask.this.cancel();
                } finally {
                    return super.cancel(mayInterruptIfRunning);
                }
            }
        };
    }
}


interface CancellableTask<T> extends Callable<T> {
    void cancel();

    RunnableFuture<T> newTask();
}
 

 7.2  停止基于线程的服务

应用程序通常会创建拥有多个线程的服务,如果应用程序准备退出,那么这些服务所拥有的线程也需要正确的结束,由于java没有抢占式方法停止线程,因此需要它们自行结束。

正确的封装原则是:除非拥有某个线程,否则不要对该线程进行操控,例如中断线程或者修改优先级等。

 

线程有个相应的所有者,即创建该线程的类,因此线程池是其工作者线程的所有者,如果要中断线程,那么应该使用线程池去中断。

线程的所有权是不可传递的。服务应该提供生命周期方法Lifecycle Method来关闭它自己以及它所拥有的线程。这样当应用程序关闭该服务的时候,服务就可以关闭所有的线程了。在ExecutorService中提供了shutdown和shutdownNow等方法,同样,在其他拥有线程的服务方法中也应该提供类似的关闭机制。

Tips:对于持有线程的服务,只要服务的存在时间大于创建线程的方法的存在时间,那么就应该提供生命周期方法。

 

7.2.1  示例:日志服务

我们通常会在应用程序中加入log信息,一般用的框架就是log4j。但是这种内联的日志功能会给一些高容量Highvolume应用程序带来一定的性能开销。另外一种替代方法是通过调用log方法将日志消息放入某个队列中,并由其他线程来处理。

public class LogService {
    private final BlockingQueue<String> queue;
    private final LoggerThread loggerThread;
    private final PrintWriter writer;
    @GuardedBy("this")
    private boolean isShutdown;
    @GuardedBy("this")
    private int reservations;

    public LogService(Writer writer) {
        this.queue = new LinkedBlockingQueue<String>();
        this.loggerThread = new LoggerThread();
        this.writer = new PrintWriter(writer);
    }

    public void start() {
        loggerThread.start();
    }

    public void stop() {
        synchronized (this) {
            isShutdown = true;
        }
        loggerThread.interrupt();
    }

    public void log(String msg) throws InterruptedException {
        synchronized (this) {
            if (isShutdown)
                throw new IllegalStateException(/*...*/);
            ++reservations;
        }
        queue.put(msg);
    }

    private class LoggerThread extends Thread {
        public void run() {
            try {
                while (true) {
                    try {
                        synchronized (LogService.this) {
                            if (isShutdown && reservations == 0)
                                break;
                        }
                        String msg = queue.take();
                        synchronized (LogService.this) {
                            --reservations;
                        }
                        writer.println(msg);
                    } catch (InterruptedException e) { /* retry */
                    }
                }
            } finally {
                writer.close();
            }
        }
    }
}

 

7.2.2  通过ExecutorService去关闭

简单的程序可以直接在main函数中启动和关闭全局的ExecutorService,而在复杂程序中,通常会将ExecutorService封装在某个更高级别的服务中,并且该服务提供自己的生命周期方法。下面我们利用ExecutorService重构上面的日志服务:

public class LogService {
    public void stop() throws InterruptedException {
        try {
            exec.shutdown(); exec.awaitTermination(TIMEOUT, UNIT);
        }
    }
}

 

7.2.3  利用Poison Pill对象关闭Producer-Consumer服务

 

7.2.5  当关闭线程池的时候,保存尚未开始的和开始后取消的任务数据,以备后面重新处理,下面是一个网页爬虫程序,关闭爬虫服务的时候将记录所有尚未开始的和已经取消的所有页面URL:

public abstract class WebCrawler {
    private volatile TrackingExecutor exec;
    @GuardedBy("this")
    private final Set<URL> urlsToCrawl = new HashSet<URL>();

    private final ConcurrentMap<URL, Boolean> seen = new ConcurrentHashMap<URL, Boolean>();
    private static final long TIMEOUT = 500;
    private static final TimeUnit UNIT = MILLISECONDS;

    public WebCrawler(URL startUrl) {
        urlsToCrawl.add(startUrl);
    }

    public synchronized void start() {
        exec = new TrackingExecutor(Executors.newCachedThreadPool());
        for (URL url : urlsToCrawl) submitCrawlTask(url);
        urlsToCrawl.clear();
    }

    public synchronized void stop() throws InterruptedException {
        try {
            saveUncrawled(exec.shutdownNow());
            if (exec.awaitTermination(TIMEOUT, UNIT))
                saveUncrawled(exec.getCancelledTasks());
        } finally {
            exec = null;
        }
    }

    protected abstract List<URL> processPage(URL url);

    private void saveUncrawled(List<Runnable> uncrawled) {
        for (Runnable task : uncrawled)
            urlsToCrawl.add(((CrawlTask) task).getPage());
    }

    private void submitCrawlTask(URL u) {
        exec.execute(new CrawlTask(u));
    }

    private class CrawlTask implements Runnable {
        private final URL url;

        CrawlTask(URL url) {
            this.url = url;
        }

        private int count = 1;

        boolean alreadyCrawled() {
            return seen.putIfAbsent(url, true) != null;
        }

        void markUncrawled() {
            seen.remove(url);
            System.out.printf("marking %s uncrawled%n", url);
        }

        public void run() {
            for (URL link : processPage(url)) {
                if (Thread.currentThread().isInterrupted())
                    return;
                submitCrawlTask(link);
            }
        }

        public URL getPage() {
            return url;
        }
    }
}

 

public class TrackingExecutor extends AbstractExecutorService {
    private final ExecutorService exec;
    private final Set<Runnable> tasksCancelledAtShutdown =
            Collections.synchronizedSet(new HashSet<Runnable>());

    public TrackingExecutor(ExecutorService exec) {
        this.exec = exec;
    }

    public void shutdown() {
        exec.shutdown();
    }

    public List<Runnable> shutdownNow() {
        return exec.shutdownNow();
    }

    public boolean isShutdown() {
        return exec.isShutdown();
    }

    public boolean isTerminated() {
        return exec.isTerminated();
    }

    public boolean awaitTermination(long timeout, TimeUnit unit)
            throws InterruptedException {
        return exec.awaitTermination(timeout, unit);
    }

    public List<Runnable> getCancelledTasks() {
        if (!exec.isTerminated())
            throw new IllegalStateException(/*...*/);
        return new ArrayList<Runnable>(tasksCancelledAtShutdown);
    }

    public void execute(final Runnable runnable) {
        exec.execute(new Runnable() {
            public void run() {
                try {
                    runnable.run();
                } finally {
                    if (isShutdown()
                            && Thread.currentThread().isInterrupted())
                        tasksCancelledAtShutdown.add(runnable);
                }
            }
        });
    }
}

 

7.3  处理非正常的线程终止

通过给应用程序提供一个UncaughtExceptionHandler异常处理器来处理未捕获的异常:

public class UEHLogger implements Thread.UncaughtExceptionHandler {
    public void uncaughtException(Thread t, Throwable e) {
        Logger logger = Logger.getAnonymousLogger();
        logger.log(Level.SEVERE, "Thread terminated with exception: " + t.getName(), e);
    }
}

 只有通过execute提交的任务,才能将它抛出的异常交给未捕获异常处理器。而通过submit提交的任务,无论是抛出未检查异常还是已检查异常,都将被认为是任务返回状态的一部分

 

7.4  JVM关闭的时候提供关闭钩子

在正常关闭JVM的时候,JVM首先调用所有已注册的关闭钩子Shutdown Hook。关闭钩子可以用来实现服务或者应用程序的清理工作,例如删除临时文件,或者清除无法由操作系统自动清除的资源。

最佳实践是对所有服务都使用同一个关闭钩子,并且在该关闭钩子中执行一系列的关闭操作。这确保了关闭操作在单个线程中串行执行,从而避免竞态条件的发生或者死锁问题。

Runtime.getRuntime().addShutdownHook(new Thread() {
    public void run() {
        try{LogService.this.stop();} catch(InterruptedException) {..}
    }
})

 

总结:在任务、线程、服务以及应用程序等模块中的生命周期结束问题,可能会增加它们在设计和实现的时候的复杂性。我们通过利用FutureTask和Executor框架,可以帮助我们构建可取消的任务和服务。

 

博客新地址:http://yidao620c.github.io

 

分享到:
评论

相关推荐

    java并发编程2

    java并发编程pdf文档第二部分:Java并发编程实战.pdf、Java多线程编程核心技术.pdf、实战Java高并发程序设计.pdf

    java并发编程:线程基础

    本资源致力于向您介绍 Java 并发编程中的线程基础,涵盖了多线程编程的核心概念、线程的创建和管理,以及线程间通信的基本方法。通过深入学习,您将建立扎实的多线程编程基础,能够更好地理解和应用多线程编程。 多...

    Java 并发核心编程

    自从java创建以来就已经支持并发的理念,如线程和锁。这篇指南主要是为帮助java多线程开发人员理解并发的核心概念以及如何应用这些理念。本文的主题是关于具有java语言风格的Thread、synchronized、volatile,以及...

    Java并发编程实战

    第7章 取消与关闭 第8章 线程池的使用 第9章 图形用户界面应用程序 第三部分 活跃性、性能与测试 第10章 避免活跃性危险 第11章 性能与可伸缩性 第12章 并发程序的测试 第四部分 高级主题 第13章 显式锁 第...

    《java 并发编程实战高清PDF版》

    深入讲解java并发编程技术,多线程、锁以及java内存模型等

    java并发编程从入门到精通

    《Java并发编程从入门到精通》作者结合自己10多年Java并发编程经验,详细介绍了Java并发编程的基础概念、工作原理、编程技巧和注意事项,对Java高性能高并发编程有极大的参考价值。 《Java并发编程从入门到精通》...

    《Java并发编程的艺术》源代码

    第2章介绍Java并发编程的底层实现原理,介绍在CPU和JVM这个层面是如何帮助Java实现并发编程的。 第3章介绍深入介绍了Java的内存模型。Java线程之间的通信对程序员完全透明,内存可见性问题很容易困扰Java程序员,本...

    java线程与并发编程

    java线程与并发编程是java并发编程的盛典,绝对高清版

    Java 并发编程实战.pdf

    《java并发编程实战》是java并发的圣经。亲自整理目录结构,层级分明(福昕阅读器整理)。高清。

    JAVA并发编程实践 .pdf

    《Java并发编程实战》深入浅出地介绍了Java线程和并发,是一本完美的Java并发参考手册。书中从并发性和线程安全性的基本概念出发,介绍了如何使用类库提供的基本并发构建块,用于避免并发危险、构造线程安全的类及验证...

    java多线程编程总结

    Java线程:并发协作-生产者消费者模型 Java线程:并发协作-死锁 Java线程:volatile关键字 Java线程:新特征-线程池 Java线程:新特征-有返回值的线程 Java线程:新特征-锁(上) Java线程:新特征-锁(下) Java...

    JAVA并发编程实践

    《JAVA并发编程实践》随着多核处理器的普及,使用并发成为构建高性能应用程序的关键。Java 5以及6在开发并发程序中取得了显著的进步,提高了Java虚拟机的性能以及并发类的可伸缩性,并加入了丰富的新并发构建块。在...

    JAVA并发编程实践.pdf

    《JAVA并发编程实践》适合于具有一定Java编程经验的程序员、希望了解Java SE 5以及6在线程技术上的改进和新特性的程序员,以及Java和并发编程的爱好者。 作者简介 作者:(美)戈茨 等 本书作者系lava标准化组织...

    Java并发编程和多线程的区别

    并发编程不仅包括多线程,还包括了处理多个独立任务的各种技术和模式,如进程、协程、分布式编程等。并发编程的目标是实现任务的并发执行,以提高系统的性能和资源利用率。 因此,多线程是并发编程的一部分。多线程...

    java并发编程书籍

    这本书对想要用java开发多线程的程序非常有帮助。这本书很深入的讲解了在java上我们该怎么更专业的进行并发程序的开发。

    Java多线程编程总结

    Java 线程系列博文总结word化,编目如下,欢迎互相学习交流: Java线程:概念与原理 Java线程:创建与启动 Java线程:线程栈模型与线程的变量 Java线程:线程状态的转换 Java线程:线程的同步与锁 Java线程:...

    java线程与并发编程实践

    java线程与并发实践编程 /美(jeff Friesen) 2017.2 java线程api和并发工具的实用指南

    java并发编程艺术

    java并发编程艺术,java多线程深入了解必看书籍,带目录完整版!!!!!

    java并发编程:juc线程池

    通过深入了解 Java 并发编程和 JUC 线程池,您可以更好地管理线程之间的协作和同步,充分发挥多核处理器的优势,确保程序稳定运行。 了解 Java 并发编程和 JUC 线程池是现代软件开发者的必备知识。通过掌握并发编程...

    JAVA多线程并发编程

    学习并发编程自己总结的知识,非常实用。JAVA学习并发编程的精华

Global site tag (gtag.js) - Google Analytics