阅读更多

0顶
0踩

互联网

原创新闻 浅谈Spark应用程序的性能调优

2016-01-19 10:51 by 副主编 mengyidan1988 评论(2) 有10685人浏览
Spark是基于内存的分布式计算引擎,以处理的高效和稳定著称。然而在实际的应用开发过程中,开发者还是会遇到种种问题,其中一大类就是和性能相关。在本文中,笔者将结合自身实践,谈谈如何尽可能地提高应用程序性能。

分布式计算引擎在调优方面有四个主要关注方向,分别是CPU、内存、网络开销和I/O,其具体调优目标如下:
1.提高CPU利用率。
2.避免OOM。
3.降低网络开销。
4.减少I/O操作。
第1章 数据倾斜
数据倾斜意味着某一个或某几个Partition中的数据量特别的大,这意味着完成针对这几个Partition的计算需要耗费相当长的时间。

如果大量数据集中到某一个Partition,那么这个Partition在计算的时候就会成为瓶颈。图1是Spark应用程序执行并发的示意图,在Spark中,同一个应用程序的不同Stage是串行执行的,而同一Stage中的不同Task可以并发执行,Task数目由Partition数来决定,如果某一个Partition的数据量特别大,则相应的task完成时间会特别长,由此导致接下来的Stage无法开始,整个Job完成的时间就会非常长。

要避免数据倾斜的出现,一种方法就是选择合适的key,或者是自己定义相关的partitioner。在Spark中Block使用了ByteBuffer来存储数据,而ByteBuffer能够存储的最大数据量不超过2GB。如果某一个key有大量的数据,那么在调用cache或persist函数时就会碰到spark-1476这个异常。

下面列出的这些API会导致Shuffle操作,是数据倾斜可能发生的关键点所在
1. groupByKey
2. reduceByKey
3. aggregateByKey
4. sortByKey
5. join
6. cogroup
7. cartesian
8. coalesce
9. repartition
10. repartitionAndSortWithinPartitions



图1: Spark任务并发模型

 def rdd: RDD[T]
}

// TODO View bounds are deprecated, should use context bounds
// Might need to change ClassManifest for ClassTag in spark 1.0.0
case class DemoPairRDD[K <% Ordered[K] : ClassManifest, V: ClassManifest](
  rdd: RDD[(K, V)]) extends RDDWrapper[(K, V)] {
  // Here we use a single Long to try to ensure the sort is balanced, 
  // but for really large dataset, we may want to consider
  // using a tuple of many Longs or even a GUID
  def sortByKeyGrouped(numPartitions: Int): RDD[(K, V)] =
    rdd.map(kv => ((kv._1, Random.nextLong()), kv._2)).sortByKey()
    .grouped(numPartitions).map(t => (t._1._1, t._2))
}

case class DemoRDD[T: ClassManifest](rdd: RDD[T]) extends RDDWrapper[T] {
  def grouped(size: Int): RDD[T] = {
    // TODO Version where withIndex is cached
    val withIndex = rdd.mapPartitions(_.zipWithIndex)

    val startValues =
      withIndex.mapPartitionsWithIndex((i, iter) => 
        Iterator((i, iter.toIterable.last))).toArray().toList
      .sortBy(_._1).map(_._2._2.toLong).scan(-1L)(_ + _).map(_ + 1L)

    withIndex.mapPartitionsWithIndex((i, iter) => iter.map {
      case (value, index) => (startValues(i) + index.toLong, value)
    })
    .partitionBy(new Partitioner {
      def numPartitions: Int = size
      def getPartition(key: Any): Int = 
        (key.asInstanceOf[Long] * numPartitions.toLong / startValues.last).toInt
    })
    .map(_._2)
  }
}

定义隐式的转换
implicit def toDemoRDD[T: ClassManifest](rdd: RDD[T]): DemoRDD[T] = 
    new DemoRDD[T](rdd)
  implicit def toDemoPairRDD[K <% Ordered[K] : ClassManifest, V: ClassManifest](
    rdd: RDD[(K, V)]): DemoPairRDD[K, V] = DemoPairRDD(rdd)
  implicit def toRDD[T](rdd: RDDWrapper[T]): RDD[T] = rdd.rdd
}

在spark-shell中就可以使用了
import RDDConversions._
yourRdd.grouped(5)

第2章 减少网络通信开销
Spark的Shuffle过程非常消耗资源,Shuffle过程意味着在相应的计算节点,要先将计算结果存储到磁盘,后续的Stage需要将上一个Stage的结果再次读入。数据的写入和读取意味着Disk I/O操作,与内存操作相比,Disk I/O操作是非常低效的。

使用iostat来查看disk i/o的使用情况,disk i/o操作频繁一般会伴随着cpu load很高。

如果数据和计算节点都在同一台机器上,那么可以避免网络开销,否则还要加上相应的网络开销。 使用iftop来查看网络带宽使用情况,看哪几个节点之间有大量的网络传输。
图2是Spark节点间数据传输的示意图,Spark Task的计算函数是通过Akka通道由Driver发送到Executor上,而Shuffle的数据则是通过Netty网络接口来实现。由于Akka通道中参数spark.akka.framesize决定了能够传输消息的最大值,所以应该避免在Spark Task中引入超大的局部变量。



图2: Spark节点间的数据传输

第1节 选择合适的并发数
为了提高Spark应用程序的效率,尽可能的提升CPU的利用率。并发数应该是可用CPU物理核数的两倍。在这里,并发数过低,CPU得不到充分的利用,并发数过大,由于spark是每一个task都要分发到计算结点,所以任务启动的开销会上升。

并发数的修改,通过配置参数来改变spark.default.parallelism,如果是sql的话,可能通过修改spark.sql.shuffle.partitions来修改。

第1项 Repartition vs. Coalesce

repartition和coalesce都能实现数据分区的动态调整,但需要注意的是repartition会导致shuffle操作,而coalesce不会。

第2节 reduceByKey vs. groupBy

groupBy操作应该尽可能的避免,第一是有可能造成大量的网络开销,第二是可能导致OOM。以WordCount为例来演示reduceByKey和groupBy的差异。
reduceByKey
    sc.textFile(“README.md”).map(l=>l.split(“,”)).map(w=>(w,1)).reduceByKey(_ + _)




图3:reduceByKey的Shuffle过程

Shuffle过程如图2所示
groupByKey
    sc.textFile(“README.md”).map(l=>l.split(“,”)).map(w=>(w,1)).groupByKey.map(r=>(r._1,r._2.sum))




图4:groupByKey的Shuffle过程


建议: 尽可能使用reduceByKey, aggregateByKey, foldByKey和combineByKey
假设有一RDD如下所示,求每个key的均值
val data = sc.parallelize( List((0, 2.), (0, 4.), (1, 0.), (1, 10.), (1, 20.)) )

方法一:reduceByKey
data.map(r=>(r._1, (r.2,1))).reduceByKey((a,b)=>(a._1 + b._1, a._2 + b._2)).map(r=>(r._1,(r._2._1/r._2._2)).foreach(println)

方法二:combineByKey
data.combineByKey(value=>(value,1),
    (x:(Double, Int), value:Double)=> (x._1+value, x._2 + 1),
    (x:(Double,Int), y:(Double, Int))=>(x._1 + y._1, x._2 + y._2))

第3节 BroadcastHashJoin vs. ShuffleHashJoin

在Join过程中,经常会遇到大表和小表的join. 为了提高效率可以使用BroadcastHashJoin, 预先将小表的内容广播到各个Executor, 这样将避免针对小表的Shuffle过程,从而极大的提高运行效率。

其实BroadCastHashJoin核心就是利用了BroadCast函数,如果理解清楚broadcast的优点,就能比较好的明白BroadcastHashJoin的优势所在。

以下是一个简单使用broadcast的示例程序。
val lst = 1 to 100 toList
val exampleRDD = sc.makeRDD(1 to 20 toSeq, 2)
val broadcastLst = sc.broadcast(lst)
exampleRDD.filter(i=>broadcastLst.valuecontains(i)).collect.foreach(println)

第4节 map vs. mapPartitions

有时需要将计算结果存储到外部数据库,势必会建立到外部数据库的连接。应该尽可能的让更多的元素共享同一个数据连接而不是每一个元素的处理时都去建立数据库连接。
在这种情况下,mapPartitions和foreachPartitons将比map操作高效的多。

第5节 数据就地读取

移动计算的开销远远低于移动数据的开销。

Spark中每个Task都需要相应的输入数据,因此输入数据的位置对于Task的性能变得很重要。按照数据获取的速度来区分,由快到慢分别是:

1.PROCESS_LOCAL
2.NODE_LOCAL
3.RACK_LOCAL

Spark在Task执行的时候会尽优先考虑最快的数据获取方式,如果想尽可能的在更多的机器上启动Task,那么可以通过调低spark.locality.wait的值来实现, 默认值是3s。

除了HDFS,Spark能够支持的数据源越来越多,如Cassandra, HBase,MongoDB等知名的NoSQL数据库,随着Elasticsearch的日渐兴起,spark和elasticsearch组合起来提供高速的查询解决方案也成为一种有益的尝试。

上述提到的外部数据源面临的一个相同问题就是如何让spark快速读取其中的数据, 尽可能的将计算结点和数据结点部署在一起是达到该目标的基本方法,比如在部署Hadoop集群的时候,可以将HDFS的DataNode和Spark Worker共享一台机器。

以cassandra为例,如果Spark的部署和Cassandra的机器有部分重叠,那么在读取Cassandra中数据的时候,通过调低spark.locality.wait就可以在没有部署Cassandra的机器上启动Spark Task。

对于Cassandra, 可以在部署Cassandra的机器上部署Spark Worker,需要注意的是Cassandra的compaction操作会极大的消耗CPU,因此在为Spark Worker配置CPU核数时,需要将这些因素综合在一起进行考虑。

这一部分的代码逻辑可以参考源码TaskSetManager::addPendingTask
private def addPendingTask(index: Int, readding: Boolean = false) {
  // Utility method that adds `index` to a list only if readding=false or it's not already there
  def addTo(list: ArrayBuffer[Int]) {
    if (!readding || !list.contains(index)) {
      list += index
    }
  }

  for (loc <- tasks(index).preferredLocations) {
    loc match {
      case e: ExecutorCacheTaskLocation =>
        addTo(pendingTasksForExecutor.getOrElseUpdate(e.executorId, new ArrayBuffer))
      case e: HDFSCacheTaskLocation => {
        val exe = sched.getExecutorsAliveOnHost(loc.host)
        exe match {
          case Some(set) => {
            for (e <- set) {
              addTo(pendingTasksForExecutor.getOrElseUpdate(e, new ArrayBuffer))
            }
            logInfo(s"Pending task $index has a cached location at ${e.host} " +
              ", where there are executors " + set.mkString(","))
          }
          case None => logDebug(s"Pending task $index has a cached location at ${e.host} " +
              ", but there are no executors alive there.")
        }
      }
      case _ => Unit
    }
    addTo(pendingTasksForHost.getOrElseUpdate(loc.host, new ArrayBuffer))
    for (rack <- sched.getRackForHost(loc.host)) {
      addTo(pendingTasksForRack.getOrElseUpdate(rack, new ArrayBuffer))
    }
  }

  if (tasks(index).preferredLocations == Nil) {
    addTo(pendingTasksWithNoPrefs)
  }

  if (!readding) {
    allPendingTasks += index  // No point scanning this whole list to find the old task there
  }
}

如果准备让spark支持新的存储源,进而开发相应的RDD,与位置相关的部分就是自定义getPreferredLocations函数,以elasticsearch-hadoop中的EsRDD为例,其代码实现如下。
override def getPreferredLocations(split: Partition): Seq[String] = {
  val esSplit = split.asInstanceOf[EsPartition]
  val ip = esSplit.esPartition.nodeIp
  if (ip != null) Seq(ip) else Nil
}

第6节 序列化

使用好的序列化算法能够提高运行速度,同时能够减少内存的使用。

Spark在Shuffle的时候要将数据先存储到磁盘中,存储的内容是经过序列化的。序列化的过程牵涉到两大基本考虑的因素,一是序列化的速度,二是序列化后内容所占用的大小。

kryoSerializer与默认的javaSerializer相比,在序列化速度和序列化结果的大小方面都具有极大的优势。所以建议在应用程序配置中使用KryoSerializer.
spark.serializer  org.apache.spark.serializer.KryoSerializer

默认的cache没有对缓存的对象进行序列化,使用的StorageLevel是MEMORY_ONLY,这意味着要占用比较大的内存。可以通过指定persist中的参数来对缓存内容进行序列化。
exampleRDD.persist(MEMORY_ONLY_SER)

需要特别指出的是persist函数是等到job执行的时候才会将数据缓存起来,属于延迟执行; 而unpersist函数则是立即执行,缓存会被立即清除。
  • 大小: 25.1 KB
  • 大小: 7.4 KB
  • 大小: 50 KB
  • 大小: 47.1 KB
0
0
评论 共 2 条 请登录后发表评论
1 楼 随WW便 2016-01-20 18:45
good!

发表评论

您还没有登录,请您登录后再发表评论

相关推荐

  • 浅谈 Spark 应用程序的性能调优

    在本文中,笔者将结合自身实践,谈谈如何尽可能地提高应用程序性能。 分布式计算引擎在调优方面有四个主要关注方向,分别是CPU、内存、网络开销和I/O,其具体调优目标如下: 提高CPU利用率。 避免O...

  • 浅谈Spark应用程序的性能调优(转)

    在本文中,笔者将结合自身实践,谈谈如何尽可能地提高应用程序性能。 分布式计算引擎在调优方面有四个主要关注方向,分别是CPU、内存、网络开销和I/O,其具体调优目标如下: 1.提高CPU利用率。 2.避免OOM。 3.降低...

  • 浅谈spark性能调优

    浅谈Spark应用程序的性能调优 2016-01-19 10:51by 副主编mengyidan1988评论(2)有5574人浏览 Sparkcassandra 声明:ITeye资讯文章的版权属于ITeye网站所有,严禁任何网站转载本文,否则必将追究法律责任! Spark...

  • 浅谈Spark-内存管理

    spark内存管理

  • Hadoop性能调优、YARN的内存和CPU配置

    转 Hadoop性能调优、YARN的内存和CPU配置 2018年06月12日 21:01:54 toto1297488504 阅读数:2417 ...

  • 浅谈我对Spark的理解

    学习Spark无非出于三点,感兴趣,有需求,他很火。 但对于我来说,从刚开始接触Spark不是因为他很火,而是因为Scala这门语言。正是Scala这门语言的许多特性让我十分爱不释手,我才开始硬着头皮去钻Scala各种独特的...

  • 浅谈机器学习生命周期平台MLflow

    MLflow 提供了一组轻量级 API,可用于任何现有的机器学习应用程序或库(TensorFlow、PyTorch、XGBoost 等),无论您当前在何处运行 ML 代码(例如:在笔记本电脑、独立应用程序或云平台中)。 机器学习工作流程 机器...

  • 运维角度浅谈MySQL数据库优化

    这篇博文主要谈MySQL数据库发展周期中所面临的问题及优化方案,暂且抛开前端应用不说,大致分为以下五个阶段:1、数据库表设计 项目立项后,开发部根据产品部需求开发项目,开发工程师工作其中一部分就是对表结构...

  • 浅谈 Apache Doris FE 处理查询 SQL 源码解析

    在使用 Apache Doris 时,我们可以通过 Apache Doris FE Web 页面或者 Mysql 协议执行 SQL 语句,但是对于 Apache Doris 背后如何对 SQL 进行处理,我们无从所知。本文章内容主要讲解 Apache Doris 查询 SQL 在 FE ...

  • 【转载】运维角度浅谈MySQL数据库优化

    运维角度浅谈MySQL数据库优化 2015-06-02 14:22:02 标签:mysql优化 mysql分库分表分区 mysql读...

  • 分布式计算浅谈

    读者至少应该掌握:1 分布式计算不仅仅是一种方式。 2 当前可用分布式至少有三种框架:分治框架、流框架、流水线框架。3 应用范围: 工业互联网络、云计算、物联网、大数据、并行计算、人工智能。.........

  • 毕业设计MATLAB_执行一维相同大小矩阵的QR分解.zip

    毕业设计matlab

  • ipython-7.9.0.tar.gz

    Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。

  • debugpy-1.0.0b3-cp37-cp37m-manylinux2010_x86_64.whl

    Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。

  • libaacs-devel-0.10.0-1.mga8.i586.rpm

    rpm -i xx.rpm 只要报错遇到aacs的可以看看架构是否一致

  • 几个ACM算法pdf.zip

    [ACM国际大学生程序设计竞赛题解].pdf ACM模板-清华大学.pdf ACM算法模板(吉林大学).pdf

  • MATLAB设计_计算局部曲率半径,累积弧长和曲率矢量.zip

    毕业设计MATLAB

  • 毕业设计MATLAB_井字游戏.zip

    毕业设计MATLAB

  • libaacs0-0.6.0-1.fc20.x86_64.rpm

    aacs0报错安装 rpm -i xx.rpm 注意架构是否正确

Global site tag (gtag.js) - Google Analytics